Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 1, Pages 75–88 (Mi smj7)  

On geometry of flat complete strictly causal Lorentzian manifolds

V. M. Gichev, E. A. Meshcheryakov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
References:
Abstract: A flat complete causal Lorentzian manifold is called strictly causal if the past and future of its every point are closed near this point. We consider the strictly causal manifolds with unipotent holonomy groups and assign to a manifold of this type four nonnegative integers (a signature) and a parabola in the cone of positive definite matrices. Two manifolds are equivalent if and only if their signatures coincide and the corresponding parabolas are equal (up to a suitable automorphism of the cone and an affine change of variable). Also, we give necessary and sufficient conditions distinguishing the parabolas of this type among all parabolas in the cone.
Keywords: Lorentzian manifold, causality, complete affine manifold.
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 1, Pages 62–72
DOI: https://doi.org/10.1007/s11202-007-0007-3
Bibliographic databases:
UDC: 513.814
Language: Russian
Citation: V. M. Gichev, E. A. Meshcheryakov, “On geometry of flat complete strictly causal Lorentzian manifolds”, Sibirsk. Mat. Zh., 48:1 (2007), 75–88; Siberian Math. J., 48:1 (2007), 62–72
Citation in format AMSBIB
\Bibitem{GicMes07}
\by V.~M.~Gichev, E.~A.~Meshcheryakov
\paper On geometry of flat complete strictly causal Lorentzian manifolds
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 1
\pages 75--88
\mathnet{http://mi.mathnet.ru/smj7}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2304879}
\zmath{https://zbmath.org/?q=an:1164.53379}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 1
\pages 62--72
\crossref{https://doi.org/10.1007/s11202-007-0007-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244424100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846583526}
Linking options:
  • https://www.mathnet.ru/eng/smj7
  • https://www.mathnet.ru/eng/smj/v48/i1/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024