Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 6, Pages 1377–1397
DOI: https://doi.org/10.33048/smzh.2020.61.611
(Mi smj6057)
 

This article is cited in 5 scientific papers (total in 5 papers)

Hardy's inequalities with remainders and lamb-type equations

R. G. Nasibullin, R. V. Makarov

Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University
Full-text PDF (514 kB) Citations (5)
References:
Abstract: We study Hardy-type integral inequalities with remainder terms for smooth compactly-supported functions in convex domains of finite inner radius. New $L_1$- and $L_p$-inequalities are obtained with constants depending on the Lamb constant which is the first positive solution to the special equation for the Bessel function. In some particular cases the constants are sharp. We obtain one-dimensional inequalities and their multidimensional analogs. The weight functions in the spatial inequalities contain powers of the distance to the boundary of the domain. We also prove that some function depending on the Bessel function is monotone decreasing. This property is essentially used in the proof of the one-dimensional inequalities. The new inequalities extend those by Avkhadiev and Wirths for $p= 2$ to the case of every $p \geq 1$.
Keywords: Hardy-type inequality, remainder term, function of distance, inner radius, Bessel function, Lamb constant.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation MK-709.2019.1
The authors were supported by the President of the Russian Federation (Grant MK–709.2019.1).
Received: 14.04.2020
Revised: 14.04.2020
Accepted: 10.08.2020
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 6, Pages 1102–1119
DOI: https://doi.org/10.1134/S0037446620060117
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.923
MSC: 35R30
Language: Russian
Citation: R. G. Nasibullin, R. V. Makarov, “Hardy's inequalities with remainders and lamb-type equations”, Sibirsk. Mat. Zh., 61:6 (2020), 1377–1397; Siberian Math. J., 61:6 (2020), 1102–1119
Citation in format AMSBIB
\Bibitem{NasMak20}
\by R.~G.~Nasibullin, R.~V.~Makarov
\paper Hardy's inequalities with remainders and lamb-type equations
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 6
\pages 1377--1397
\mathnet{http://mi.mathnet.ru/smj6057}
\crossref{https://doi.org/10.33048/smzh.2020.61.611}
\elib{https://elibrary.ru/item.asp?id=44973746}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 6
\pages 1102--1119
\crossref{https://doi.org/10.1134/S0037446620060117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608907600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100087892}
Linking options:
  • https://www.mathnet.ru/eng/smj6057
  • https://www.mathnet.ru/eng/smj/v61/i6/p1377
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :158
    References:44
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024