|
This article is cited in 2 scientific papers (total in 2 papers)
On periodic groups isospectral to $a_7$. ii
A. S. Mamontova, E. Jabarab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Dipartimento di Filosofia e Beni Culturali,
Universitá di Ca'Foscari,
Dorsoduro 3484/D-30123 Venezia, Italy
Abstract:
Let $G$ be a periodic group and let $\omega(G)$ be the spectrum of $G$. We prove that if $G$ is isospectral to $A_7$, the alternating group of degree $7$ (i.e., $\omega(G)$ is equal to the spectrum of $A_7$); then $G$ has a finite nonabelian simple subgroup.
Keywords:
periodic group, locally finite group, spectrum.
Received: 07.05.2020 Revised: 04.06.2020 Accepted: 17.06.2020
Citation:
A. S. Mamontov, E. Jabara, “On periodic groups isospectral to $a_7$. ii”, Sibirsk. Mat. Zh., 61:6 (2020), 1366–1376; Siberian Math. J., 61:6 (2020), 1093–1101
Linking options:
https://www.mathnet.ru/eng/smj6056 https://www.mathnet.ru/eng/smj/v61/i6/p1366
|
|