Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 6, Pages 1359–1365
DOI: https://doi.org/10.33048/smzh.2020.61.609
(Mi smj6055)
 

This article is cited in 2 scientific papers (total in 2 papers)

On recognition of the sporadic simple groups $hs$, $j_3$, $suz$, $o'n$, $ly$, $th$, $fi_{23}$, and $fi_{24}'$ by the gruenberg–kegel graph

A. S. Kondrat'evab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (169 kB) Citations (2)
References:
Abstract: The Gruenberg–Kegel graph (the prime graph) of a finite group $G$ is the graph whose vertices are the prime divisors of the order of $G$ and two different vertices $p$ and $q$ are adjacent if and only if $G$ contains an element of order $pq$. We find all finite groups with the same Gruenberg–Kegel graph as $S$ for each of the sporadic groups $S$ isomorphic to $HS$, $J_3$, $Suz$, $O'N$, $Ly$, $Th$, $Fi_{23}$, or $Fi_{24}'$. In particular, we establish the recognition by the Gruenberg–Kegel graph for these eight groups $S$.
Keywords: finite group, simple group, sporadic group, recognition, Gruenberg–Kegel graph.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-00007
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
The author was supported by the Russian and Belarusian Foundations for Basic Research (Grant 20–51–00007) and the State Maintenance Program for the Leading Universities of the Russian Federation (Agreement 02.A03.21.0006 of 27.08.2013).
Received: 11.06.2020
Revised: 15.07.2020
Accepted: 10.08.2020
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 6, Pages 1087–1092
DOI: https://doi.org/10.1134/S0037446620060099
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: A. S. Kondrat'ev, “On recognition of the sporadic simple groups $hs$, $j_3$, $suz$, $o'n$, $ly$, $th$, $fi_{23}$, and $fi_{24}'$ by the gruenberg–kegel graph”, Sibirsk. Mat. Zh., 61:6 (2020), 1359–1365; Siberian Math. J., 61:6 (2020), 1087–1092
Citation in format AMSBIB
\Bibitem{Kon20}
\by A.~S.~Kondrat'ev
\paper On recognition of the sporadic simple groups~$hs$, $j_3$, $suz$, $o'n$, $ly$, $th$, $fi_{23}$, and $fi_{24}'$ by the gruenberg--kegel graph
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 6
\pages 1359--1365
\mathnet{http://mi.mathnet.ru/smj6055}
\crossref{https://doi.org/10.33048/smzh.2020.61.609}
\elib{https://elibrary.ru/item.asp?id=45000171}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 6
\pages 1087--1092
\crossref{https://doi.org/10.1134/S0037446620060099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608907600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099539702}
Linking options:
  • https://www.mathnet.ru/eng/smj6055
  • https://www.mathnet.ru/eng/smj/v61/i6/p1359
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :121
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024