Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 6, Pages 1257–1299
DOI: https://doi.org/10.33048/smzh.2020.61.605
(Mi smj6051)
 

This article is cited in 14 scientific papers (total in 14 papers)

The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms

S. K. Vodopyanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We prove that each homeomorphism $\varphi: D\to D'$ of Euclidean domains in $\Bbb R^n$, $n\geq2$, belonging to the Sobolev class $W^1_{p,\operatorname{loc}}(D)$, where $p\in[1,\infty)$, and having finite distortion induces a bounded composition operator from the weighted Sobolev space $L^1_p(D';\omega)$ into $L^1_p(D)$ for some weight function $\omega:D'\to (0,\infty)$. This implies that in the cases $p>n-1$ and $n\geq 3$ as well as $p\geq1$ and $n\geq 2$ the inverse $\varphi^{-1}: D'\to D$ belongs to the Sobolev class $W^1_{1,\operatorname{loc}}(D')$, has finite distortion, and is differentiable ${\Cal H}^{n}$-almost everywhere in $D'$. We apply this result to $\Cal Q_{q,p}$-homeomorphisms; the method of proof also works for homeomorphisms of Carnot groups. Moreover, we prove that the class of $\Cal Q_{q,p}$-homeomorphisms is completely determined by the controlled variation of the capacity of cubical condensers whose shells are concentric cubes.
Keywords: quasiconformal analysis, Sobolev space, composition operator, capacity estimate.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
The author was supported by the Mathematical Center in Akademgorodok and the Ministry of Science and Higher Education of the Russian Federation (Contract 075–15–2019–1613).
Received: 18.07.2020
Revised: 26.09.2020
Accepted: 09.10.2020
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 6, Pages 1002–1038
DOI: https://doi.org/10.1134/S0037446620060051
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.54
MSC: 35R30
Language: Russian
Citation: S. K. Vodopyanov, “The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms”, Sibirsk. Mat. Zh., 61:6 (2020), 1257–1299; Siberian Math. J., 61:6 (2020), 1002–1038
Citation in format AMSBIB
\Bibitem{Vod20}
\by S.~K.~Vodopyanov
\paper The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 6
\pages 1257--1299
\mathnet{http://mi.mathnet.ru/smj6051}
\crossref{https://doi.org/10.33048/smzh.2020.61.605}
\elib{https://elibrary.ru/item.asp?id=44994844}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 6
\pages 1002--1038
\crossref{https://doi.org/10.1134/S0037446620060051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608907600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099664439}
Linking options:
  • https://www.mathnet.ru/eng/smj6051
  • https://www.mathnet.ru/eng/smj/v61/i6/p1257
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:378
    Full-text PDF :137
    References:48
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024