Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 6, Pages 1247–1256
DOI: https://doi.org/10.33048/smzh.2020.61.604
(Mi smj6050)
 

This article is cited in 1 scientific paper (total in 1 paper)

The polynomials of prime virtual knots of genus 1 and complexity at most 5

A. Yu. Vesninabc, M. E. Ivanova

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Tomsk State University
References:
Abstract: Akimova and Matveev classified the prime virtual knots of genus 1 which admit diagrams with at most 5 classical crossings in 2017. In 2018, Kaur, Prabhakar, and Vesnin introduced the families of the $L$- and $F$-polynomials of virtual knots generalizing the Kauffman affine index polynomial. We introduce the notion of a totally flat-trivial virtual knot. We prove that the $L$- and $F$-polynomials for these knots coincide with the affine index polynomial. Also, we establish that all Akimova–Matveev knots are totally flat-trivial and calculate their affine index polynomials.
Keywords: virtual knot, knot in a thickened torus, affine index polynomial.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Y26.31.0025
The authors were supported by the Laboratory of Topology and Dynamics of Novosibirsk State University (Grant 14.Y26.31.0025 of the Ministry of Education and Science of the Russian Federation).
Received: 06.08.2019
Revised: 06.08.2019
Accepted: 18.10.2019
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 6, Pages 994–1001
DOI: https://doi.org/10.1134/S003744662006004X
Bibliographic databases:
Document Type: Article
UDC: 515.162.8
MSC: 35R30
Language: Russian
Citation: A. Yu. Vesnin, M. E. Ivanov, “The polynomials of prime virtual knots of genus 1 and complexity at most 5”, Sibirsk. Mat. Zh., 61:6 (2020), 1247–1256; Siberian Math. J., 61:6 (2020), 994–1001
Citation in format AMSBIB
\Bibitem{VesIva20}
\by A.~Yu.~Vesnin, M.~E.~Ivanov
\paper The polynomials of prime virtual knots of genus~1 and complexity at~most~5
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 6
\pages 1247--1256
\mathnet{http://mi.mathnet.ru/smj6050}
\crossref{https://doi.org/10.33048/smzh.2020.61.604}
\elib{https://elibrary.ru/item.asp?id=44386062}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 6
\pages 994--1001
\crossref{https://doi.org/10.1134/S003744662006004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608907600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100134133}
Linking options:
  • https://www.mathnet.ru/eng/smj6050
  • https://www.mathnet.ru/eng/smj/v61/i6/p1247
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :95
    References:30
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024