Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 4, Pages 803–822
DOI: https://doi.org/10.33048/smzh.2020.61.407
(Mi smj6021)
 

The superalgebras of jordan brackets defined by the $n$-dimensional sphere

V. N. Zhelyabina, A. S. Zakharovbc

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c Novosibirsk State Technical University
References:
Abstract: We study the generalized Leibniz brackets on the coordinate algebra of the $n$-dimensional sphere. In the case of the one-dimensional sphere, we show that each of these is a bracket of vector type. Each Jordan bracket on the coordinate algebra of the two-dimensional sphere is a generalized Poisson bracket. We equip the coordinate algebra of a sphere of odd dimension with a Jordan bracket whose Kantor double is a simple Jordan superalgebra. Using such superalgebras, we provide some examples of the simple abelian Jordan superalgebras whose odd part is a finitely generated projective module of rank 1 in an arbitrary number of generators. An analogous result holds for the Cartesian product of the sphere of even dimension and the affine line. In particular, in the case of the 2-dimensional sphere we obtain the exceptional Jordan superalgebra. The superalgebras we constructed give new examples of simple Jordan superalgebras.
Keywords: associative commutative superalgebra, Jordan superalgebra, differential algebra, Grassmann algebra, superalgebra of a bilinear form, polynomial algebra, derivation, Jordan bracket, bracket of vector type, Poisson bracket, projective module, affine space, sphere.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0001
The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project 0314–2019–0001).
Received: 16.12.2019
Revised: 20.03.2020
Accepted: 17.06.2020
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 4, Pages 632–647
DOI: https://doi.org/10.1134/S0037446620040072
Bibliographic databases:
Document Type: Article
UDC: 512.554
MSC: 35R30
Language: Russian
Citation: V. N. Zhelyabin, A. S. Zakharov, “The superalgebras of jordan brackets defined by the $n$-dimensional sphere”, Sibirsk. Mat. Zh., 61:4 (2020), 803–822; Siberian Math. J., 61:4 (2020), 632–647
Citation in format AMSBIB
\Bibitem{ZheZak20}
\by V.~N.~Zhelyabin, A.~S.~Zakharov
\paper The superalgebras of jordan brackets defined by the $n$-dimensional sphere
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 4
\pages 803--822
\mathnet{http://mi.mathnet.ru/smj6021}
\crossref{https://doi.org/10.33048/smzh.2020.61.407}
\elib{https://elibrary.ru/item.asp?id=45424023}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 4
\pages 632--647
\crossref{https://doi.org/10.1134/S0037446620040072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000554787900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088790687}
Linking options:
  • https://www.mathnet.ru/eng/smj6021
  • https://www.mathnet.ru/eng/smj/v61/i4/p803
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :80
    References:33
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024