Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 2, Pages 297–313
DOI: https://doi.org/10.33048/smzh.2020.61.205
(Mi smj5982)
 

The discrete spectrum of an infinite kirchhoff plate in the form of a locally perturbed strip

F. L. Bakhareva, S. A. Nazarovb

a Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
b Saint Petersburg State University
References:
Abstract: We study the discrete spectra of boundary value problems for the biharmonic operator describing oscillations of a Kirchhoff plate in the form of a locally perturbed strip with rigidly clamped or simply supported edges. The two methods are applied: variational and asymptotic. The first method shows that for a narrowing plate the discrete spectrum is empty in both cases, whereas for a widening plate at least one eigenvalue appears below the continuous spectrum cutoff for rigidly clamped edges. The presence of the discrete spectrum remains an open question for simply supported edges. The asymptotic method works only for small variations of the boundary. While for a small smooth perturbation the construction of asymptotics is generally the same for both types of boundary conditions, the asymptotic formulas for eigenvalues can differ substantially even in the main correction term for a perturbation with corner points.
Keywords: infinite Kirchhoff plate, biharmonic operator, discrete spectrum, eigenvalue asymptotics.
Funding agency Grant number
Russian Science Foundation 17-11-01003
The authors were partially supported by the Russian Science Foundation (Grant 17-11-01003).
Received: 15.06.2019
Revised: 20.08.2019
Accepted: 18.10.2019
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 2, Pages 233–247
DOI: https://doi.org/10.1134/S0037446620020056
Bibliographic databases:
Document Type: Article
UDC: 517.984.5:517.956.227
Language: Russian
Citation: F. L. Bakharev, S. A. Nazarov, “The discrete spectrum of an infinite kirchhoff plate in the form of a locally perturbed strip”, Sibirsk. Mat. Zh., 61:2 (2020), 297–313; Siberian Math. J., 61:2 (2020), 233–247
Citation in format AMSBIB
\Bibitem{BakNaz20}
\by F.~L.~Bakharev, S.~A.~Nazarov
\paper The discrete spectrum of an infinite kirchhoff plate in the form of a~locally perturbed strip
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 2
\pages 297--313
\mathnet{http://mi.mathnet.ru/smj5982}
\crossref{https://doi.org/10.33048/smzh.2020.61.205}
\elib{https://elibrary.ru/item.asp?id=43278678}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 2
\pages 233--247
\crossref{https://doi.org/10.1134/S0037446620020056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000540148100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086336437}
Linking options:
  • https://www.mathnet.ru/eng/smj5982
  • https://www.mathnet.ru/eng/smj/v61/i2/p297
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :83
    References:53
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024