Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 1, Pages 175–193
DOI: https://doi.org/10.33048/smzh.2020.61.112
(Mi smj5972)
 

This article is cited in 3 scientific papers (total in 3 papers)

Construction and applications of an additive basis for the relatively free associative algebra with the lie nilpotency identity of degree 5

S. V. Pchelintsevab

a Financial University under the Government of the Russian Federation, Moscow
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (553 kB) Citations (3)
References:
Abstract: We construct an additive basis for the relatively free associative algebra $F^{(5)}(K)$ with the Lie nilpotency identity of degree 5 over an infinite domain $K$ containing $\tfrac{1}{6}$. We prove that approximately half of the elements in $F^{(5)}(K)$ are central. We also prove that the additive group of $F^{(5)}(\Bbb Z)$ lacks the elements of simple degree $\ge 5$. We find an asymptotic estimation of the codimension of T-ideal, which is generated by the commutator $[x_1, x_2,\dots,x_5 ]$ of degree 5.
Keywords: Lie nilpotency identity of degree 5, additive basis, central polynomial, kernel polynomial, codimension of a $T$-ideal.
Funding agency Grant number
Russian Science Foundation 14-21-00065
The author was supported by the Russian Science Foundation (Grant 14-21-00065).
Received: 15.01.2019
Revised: 13.02.2019
Accepted: 12.03.2019
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 1, Pages 139–153
DOI: https://doi.org/10.1134/S0037446620010127
Bibliographic databases:
Document Type: Article
UDC: 512.552.4+512.572
MSC: 35R30
Language: Russian
Citation: S. V. Pchelintsev, “Construction and applications of an additive basis for the relatively free associative algebra with the lie nilpotency identity of degree 5”, Sibirsk. Mat. Zh., 61:1 (2020), 175–193; Siberian Math. J., 61:1 (2020), 139–153
Citation in format AMSBIB
\Bibitem{Pch20}
\by S.~V.~Pchelintsev
\paper Construction and applications of an additive basis for the relatively free associative algebra with the lie nilpotency identity of degree~5
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 1
\pages 175--193
\mathnet{http://mi.mathnet.ru/smj5972}
\crossref{https://doi.org/10.33048/smzh.2020.61.112}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 1
\pages 139--153
\crossref{https://doi.org/10.1134/S0037446620010127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000516567300012}
Linking options:
  • https://www.mathnet.ru/eng/smj5972
  • https://www.mathnet.ru/eng/smj/v61/i1/p175
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :46
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024