Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 1, Pages 148–159
DOI: https://doi.org/10.33048/smzh.2020.61.110
(Mi smj5970)
 

This article is cited in 8 scientific papers (total in 8 papers)

On supersolubility of a group with seminormal subgroups

V. S. Monakhova, A. A. Trofimukb

a Gomel State University named after Francisk Skorina
b A. S. Pushkin Brest State University
Full-text PDF (478 kB) Citations (8)
References:
Abstract: A subgroup $A$ is called seminormal in a group $G$ if there exists a subgroup $B$ such that $G=AB$ and $AX$ is a subgroup of $G$ for every subgroup $X$ of $B$. Studying a group of the form $G=AB$ with seminormal supersoluble subgroups $A$ and $B$, we prove that $G^\goth U =(G^\prime )^\goth N$. Moreover, if the indices of the subgroups $A$ and $B$ of $G$ are coprime then $G^\goth U =G^{\goth N^2}$. Here $\goth N$, $\goth U$, and $\goth N^2$ are the formations of all nilpotent, supersoluble, and metanilpotent groups respectively, while $H^\goth X$ is the $\goth X$-residual of $H$. We also prove the supersolubility of $G=AB$ when all Sylow subgroups of $A$ and $B$ are seminormal in $G$.
Keywords: supersoluble group, nilpotent group, seminormal subgroup, derived subgroup, $\goth X$-residual, index of a subgroup, Sylow subgroup.
Received: 14.01.2019
Revised: 02.09.2019
Accepted: 18.10.2019
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 1, Pages 118–126
DOI: https://doi.org/10.1134/S0037446620010103
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: V. S. Monakhov, A. A. Trofimuk, “On supersolubility of a group with seminormal subgroups”, Sibirsk. Mat. Zh., 61:1 (2020), 148–159; Siberian Math. J., 61:1 (2020), 118–126
Citation in format AMSBIB
\Bibitem{MonTro20}
\by V.~S.~Monakhov, A.~A.~Trofimuk
\paper On supersolubility of a~group with seminormal subgroups
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 1
\pages 148--159
\mathnet{http://mi.mathnet.ru/smj5970}
\crossref{https://doi.org/10.33048/smzh.2020.61.110}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 1
\pages 118--126
\crossref{https://doi.org/10.1134/S0037446620010103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000516567300010}
Linking options:
  • https://www.mathnet.ru/eng/smj5970
  • https://www.mathnet.ru/eng/smj/v61/i1/p148
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :67
    References:42
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024