Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 1, Pages 120–136
DOI: https://doi.org/10.33048/smzh.2020.61.108
(Mi smj5968)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the $\pmb{\forall}\pmb{\exists}$-theories of free projective planes

N. T. Kogabaevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (563 kB) Citations (1)
References:
Abstract: Studying the elementary properties of free projective planes of finite rank, we prove that for $m>n$, an arbitrary $\forall\exists\forall$-formula $\Phi(\bar{y})$, and a tuple $\bar{u}$ of elements of the free projective plane $\frak{F}_n$ if $\Phi(\bar{u})$ holds on the plane $\frak{F}_m$ then $\Phi(\bar{u})$ holds on the plane $\frak{F}_n$ too. This implies the coincidence of the $\forall\exists$-theories of free projective planes of different finite ranks.
Keywords: elementary theory, $\forall\exists$-theory, projective plane, free projective plane, configuration, incidence.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-5913.2018.1
Russian Foundation for Basic Research 17-01-00247_а
Siberian Branch of Russian Academy of Sciences I.1.1 (проект 0314-2019-0002)
The author was supported by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-5913.2018.1), the Russian Foundation for Basic Research (Grant 17-01-00247), and the Program of Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences (Grant I.1.1, Project 0314-2019-0002).
Received: 23.01.2019
Revised: 26.04.2019
Accepted: 15.05.2019
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 1, Pages 95–108
DOI: https://doi.org/10.1134/S0037446620010085
Bibliographic databases:
Document Type: Article
UDC: 510.8+514.146
Language: Russian
Citation: N. T. Kogabaev, “On the $\pmb{\forall}\pmb{\exists}$-theories of free projective planes”, Sibirsk. Mat. Zh., 61:1 (2020), 120–136; Siberian Math. J., 61:1 (2020), 95–108
Citation in format AMSBIB
\Bibitem{Kog20}
\by N.~T.~Kogabaev
\paper On the $\pmb{\forall}\pmb{\exists}$-theories of free projective planes
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 1
\pages 120--136
\mathnet{http://mi.mathnet.ru/smj5968}
\crossref{https://doi.org/10.33048/smzh.2020.61.108}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 1
\pages 95--108
\crossref{https://doi.org/10.1134/S0037446620010085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000516567300008}
Linking options:
  • https://www.mathnet.ru/eng/smj5968
  • https://www.mathnet.ru/eng/smj/v61/i1/p120
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :54
    References:39
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024