Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 3, Pages 694–706 (Mi smj58)  

This article is cited in 76 scientific papers (total in 76 papers)

Boundedness and compactness of an integral operator in a mixed norm space on the polydisk

S. Stević

Mathematical Institute, Serbian Academy of Sciences and Arts
References:
Abstract: We study the following integral type operator
$$ T_g(f)(z)=\int\limits_0^{z_1}\dots\int\limits_0^{z_n}f(\zeta_1,\dots,\zeta_n)g(\zeta_1,\dots,\zeta_n)\,d\zeta_1\dots\zeta_n $$
in the space of analytic functions on the unit polydisk $U^n$ in the complex vector space $\mathbb C^n$. We show that the operator is bounded in the mixed norm space
$${\mathscr A}^{p,q}_\alpha(U^n)=\biggl\{f\in H(U^n)\mid\int\limits_{[0,1)^n}M_p^q(f,r)\prod_{j=1}^n(1-r_j)^{\alpha_j}\,dr_j<\infty\biggr\}, $$
with $p,q\in[1,\infty)$ and $\alpha=(\alpha_1,\dots,\alpha_n)$, such that $\alpha_j>-1$, for every $j=1,\dots,n$, if and only if $\sup\limits_{z\in U^n}\prod\limits_{j=1}^n(1-|z_j|)|g(z)|<\infty$. Also, we prove that the operator is compact if and only if $\lim\limits_{z\to\partial U^n}\prod\limits_{j=1}^n(1-|z_j|)|g(z)|=0$.
Keywords: analytic function, mixed norm space, integral operator, polydisk, boundedness, compactness.
Received: 23.11.2005
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 3, Pages 559–569
DOI: https://doi.org/10.1007/s11202-007-0058-5
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: S. Stević, “Boundedness and compactness of an integral operator in a mixed norm space on the polydisk”, Sibirsk. Mat. Zh., 48:3 (2007), 694–706; Siberian Math. J., 48:3 (2007), 559–569
Citation in format AMSBIB
\Bibitem{Ste07}
\by S.~Stevi{\'c}
\paper Boundedness and compactness of an integral operator in a~mixed norm space on the polydisk
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 3
\pages 694--706
\mathnet{http://mi.mathnet.ru/smj58}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2347917}
\zmath{https://zbmath.org/?q=an:1164.47331}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 3
\pages 559--569
\crossref{https://doi.org/10.1007/s11202-007-0058-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247609000018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347222542}
Linking options:
  • https://www.mathnet.ru/eng/smj58
  • https://www.mathnet.ru/eng/smj/v48/i3/p694
  • This publication is cited in the following 76 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:836
    Full-text PDF :173
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024