Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1967, Volume 8, Number 5, Pages 1143–1155 (Mi smj5454)  

This article is cited in 1 scientific paper (total in 1 paper)

The manifold $E(0,n-m,m)$ in $n$-dimensional projective space $P_n(m>2,n<m(m+1))$

E. T. Ivlev
Received: 09.03.1966
English version:
Siberian Mathematical Journal, 1967, Volume 8, Issue 5, Pages 873–882
DOI: https://doi.org/10.1007/BF01040661
Bibliographic databases:
Document Type: Article
UDC: 513.015.2
Language: Russian
Citation: E. T. Ivlev, “The manifold $E(0,n-m,m)$ in $n$-dimensional projective space $P_n(m>2,n<m(m+1))$”, Sibirsk. Mat. Zh., 8:5 (1967), 1143–1155; Siberian Math. J., 8:5 (1967), 873–882
Citation in format AMSBIB
\Bibitem{Ivl67}
\by E.~T.~Ivlev
\paper The manifold $E(0,n-m,m)$ in $n$-dimensional projective space $P_n(m>2,n<m(m+1))$
\jour Sibirsk. Mat. Zh.
\yr 1967
\vol 8
\issue 5
\pages 1143--1155
\mathnet{http://mi.mathnet.ru/smj5454}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0221400}
\zmath{https://zbmath.org/?q=an:0153.51002}
\transl
\jour Siberian Math. J.
\yr 1967
\vol 8
\issue 5
\pages 873--882
\crossref{https://doi.org/10.1007/BF01040661}
Linking options:
  • https://www.mathnet.ru/eng/smj5454
  • https://www.mathnet.ru/eng/smj/v8/i5/p1143
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025