Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 3, Pages 645–667 (Mi smj54)  

This article is cited in 50 scientific papers (total in 50 papers)

Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media

A. M. Meirmanov

Belgorod State University
References:
Abstract: A linear system is considered of the differential equations describing a joint motion of an elastic porous body and a fluid occupying a porous space. The problem is linear but very hard to tackle since its main differential equations involve some (big and small) nonsmooth oscillatory coefficients. Rigorous justification under various conditions on the physical parameters is fulfilled for the homogenization procedures as the dimensionless size of pores vanishes, while the porous body is geometrically periodic. In result, we derive Biot?s equations of poroelasticity, the system consisting of the anisotropic Lamé equations for the solid component and the acoustic equations for the fluid component, the equations of viscoelasticity, or the decoupled system consisting of Darcy's system of filtration or the acoustic equations for the fluid component (first approximation) and the anisotropic Lamé equations for the solid component (second approximation) depending on the ratios between the physical parameters. The proofs are based on Nguetseng's two-scale convergence method of homogenization in periodic structures.
Keywords: Biot equations, Stokes equations, Lamé equations, two-scale convergence, homogenization of periodic structures, poroelasticity, viscoelasticity.
Received: 22.02.2006
Revised: 11.01.2007
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 3, Pages 519–538
DOI: https://doi.org/10.1007/s11202-007-0054-9
Bibliographic databases:
UDC: 517.958:531.72+517.958:539.3(4)
Language: Russian
Citation: A. M. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Sibirsk. Mat. Zh., 48:3 (2007), 645–667; Siberian Math. J., 48:3 (2007), 519–538
Citation in format AMSBIB
\Bibitem{Mei07}
\by A.~M.~Meirmanov
\paper Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 3
\pages 645--667
\mathnet{http://mi.mathnet.ru/smj54}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2347913}
\zmath{https://zbmath.org/?q=an:1164.74393}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 3
\pages 519--538
\crossref{https://doi.org/10.1007/s11202-007-0054-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247609000014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347235125}
Linking options:
  • https://www.mathnet.ru/eng/smj54
  • https://www.mathnet.ru/eng/smj/v48/i3/p645
  • This publication is cited in the following 50 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:628
    Full-text PDF :194
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024