Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 3, Pages 577–585 (Mi smj48)  

This article is cited in 4 scientific papers (total in 4 papers)

A rearrangement estimate for the generalized multilinear fractional integrals

V. S. Gulieva, Sh. A. Nazirovab

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
b Khazar University
Full-text PDF (187 kB) Citations (4)
References:
Abstract: We study the $L_{p_1}\times L_{p_2}\times\ldots\times L_{p_k}$ boundedness of generalized multilinear fractional integrals. An O'Neil type inequality for a $k$-linear integral operator is proved. Using an O'Neil type inequality for a $k$-linear integral operator, we obtain a pointwise rearrangement estimate of generalized multilinear fractional integrals. By way of application we prove a Sobolev type theorem for these integrals.
Keywords: Lebesgue space, O'Neil type inequality, rearrangement estimate, generalized multilinear fractional integral.
Received: 17.10.2005
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 3, Pages 463–470
DOI: https://doi.org/10.1007/s11202-007-0048-7
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: V. S. Guliev, Sh. A. Nazirova, “A rearrangement estimate for the generalized multilinear fractional integrals”, Sibirsk. Mat. Zh., 48:3 (2007), 577–585; Siberian Math. J., 48:3 (2007), 463–470
Citation in format AMSBIB
\Bibitem{GulNaz07}
\by V.~S.~Guliev, Sh.~A.~Nazirova
\paper A rearrangement estimate for the generalized multilinear fractional integrals
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 3
\pages 577--585
\mathnet{http://mi.mathnet.ru/smj48}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2347907}
\zmath{https://zbmath.org/?q=an:1164.47345}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 3
\pages 463--470
\crossref{https://doi.org/10.1007/s11202-007-0048-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247609000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347236882}
Linking options:
  • https://www.mathnet.ru/eng/smj48
  • https://www.mathnet.ru/eng/smj/v48/i3/p577
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025