Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 2, Pages 417–422 (Mi smj35)  

This article is cited in 5 scientific papers (total in 5 papers)

On the number of countable models of complete theories with finite Rudin–Keisler preorders

S. V. Sudoplatov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (188 kB) Citations (5)
References:
Abstract: The aim of this article is to generalize the classification of complete theories with finitely many countable models with respect to two principal characteristics, Rudin–Keisler preorders and the distribution functions of the number of limit models, to an arbitrary case with a finite Rudin–Keisler preorder. We establish that the same characteristics play a crucial role in the case we consider. We prove the compatibility of arbitrary finite Rudin–Keisler preorders with arbitrary distribution functions $f$ satisfying the condition rang $\operatorname{rang}f\subseteq\omega\cup\{\omega,2^\omega\}$.
Keywords: countable model, complete theory, Rudin–Keisler preorder.
Received: 08.10.2003
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 2, Pages 334–338
DOI: https://doi.org/10.1007/s11202-007-0035-z
Bibliographic databases:
UDC: 510.67
Language: Russian
Citation: S. V. Sudoplatov, “On the number of countable models of complete theories with finite Rudin–Keisler preorders”, Sibirsk. Mat. Zh., 48:2 (2007), 417–422; Siberian Math. J., 48:2 (2007), 334–338
Citation in format AMSBIB
\Bibitem{Sud07}
\by S.~V.~Sudoplatov
\paper On the number of countable models of complete theories with finite Rudin--Keisler preorders
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 2
\pages 417--422
\mathnet{http://mi.mathnet.ru/smj35}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2330071}
\zmath{https://zbmath.org/?q=an:1164.03317}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 2
\pages 334--338
\crossref{https://doi.org/10.1007/s11202-007-0035-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245965600015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34147115092}
Linking options:
  • https://www.mathnet.ru/eng/smj35
  • https://www.mathnet.ru/eng/smj/v48/i2/p417
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :85
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024