Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 4, Pages 922–931
DOI: https://doi.org/10.33048/smzh.2019.60.417
(Mi smj3125)
 

This article is cited in 1 scientific paper (total in 1 paper)

On strongly $\Pi$-permutable subgroups of a finite group

B. Hua, J. Huanga, A. N. Skibab

a School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, P.R. China
b Francisk Skorina Gomel State University, Gomel, Belarus
Full-text PDF (442 kB) Citations (1)
References:
Abstract: Let $\sigma=\{\sigma_i\mid i\in I\}$ be some partition of the set of all primes $\mathbb{P}$, let $\varnothing\ne\Pi\subseteq\sigma$, and let $G$ be a finite group. A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\Pi$-set of $G$ if each member $\ne 1$ of $\mathcal{H}$ is a Hall $\sigma_i$-subgroup of $G$ for some $\sigma_i\in\Pi$  and $\mathcal{H}$ has exactly one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\Pi$  such that $\sigma_i\cap\pi(G)\ne\emptyset$. A subgroup $A$ of $G$ is called (i) $\Pi$-permutable in $G$ if $G$ has a complete Hall $\Pi$-set $\mathcal{H}$ such that $AH^x=H^xA$ for all $H\in\mathcal{H}$ and $x\in G$; (ii) $\sigma$-subnormal in $G$ if there is a subgroup chain $A=A_0\leqslant A_1\leqslant\dots\leqslant A_t=G$ such that either $A_{i-1}\leqslant A_i$ or $A_i/(A_{i-1})A_i$ is a $\sigma_k$-group for some $k$ for all $i=1,\dots,t$; and (iii) strongly $\Pi$-permutable if $A$ is $\Pi$-permutable and $\sigma$-subnormal in $G$. We study the strongly $\Pi$-permutable subgroups of $G$. In particular, we give characterizations of these subgroups and prove that the set of all strongly $\Pi$-permutable subgroups of $G$ forms a sublattice of the lattice of all subgroups of $G$.
Keywords: finite group, subgroup lattice, $\sigma$-subnormal subgroup, strongly $\Pi$-permutable subgroup.
Funding agency Grant number
National Natural Science Foundation of China 11401264
TAPP of Jiangsu Higher Education Institutions PPZY 2015A013
The authors were supported by the NNSF of China (Grant 11401264) and a TAPP of Jiangsu Higher Education Institutions (Grant PPZY 2015A013).
Received: 13.10.2018
Revised: 13.10.2018
Accepted: 15.05.2019
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 4, Pages 720–726
DOI: https://doi.org/10.1134/S0037446619040177
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: B. Hu, J. Huang, A. N. Skiba, “On strongly $\Pi$-permutable subgroups of a finite group”, Sibirsk. Mat. Zh., 60:4 (2019), 922–931; Siberian Math. J., 60:4 (2019), 720–726
Citation in format AMSBIB
\Bibitem{HuHuaSki19}
\by B.~Hu, J.~Huang, A.~N.~Skiba
\paper On strongly $\Pi$-permutable subgroups of a finite group
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 4
\pages 922--931
\mathnet{http://mi.mathnet.ru/smj3125}
\crossref{https://doi.org/10.33048/smzh.2019.60.417}
\elib{https://elibrary.ru/item.asp?id=41647317}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 4
\pages 720--726
\crossref{https://doi.org/10.1134/S0037446619040177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000480738600017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070542237}
Linking options:
  • https://www.mathnet.ru/eng/smj3125
  • https://www.mathnet.ru/eng/smj/v60/i4/p922
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :112
    References:29
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024