Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 4, Pages 845–858
DOI: https://doi.org/10.33048/smzh.2019.60.411
(Mi smj3119)
 

This article is cited in 4 scientific papers (total in 4 papers)

Plane wave solutions to the equations of electrodynamics in an anisotropic medium

V. G. Romanov

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (478 kB) Citations (4)
References:
Abstract: Under examination is the system of equations of electrodynamics for a nonconducting nonmagnetic medium with the simplest anisotropy of permittivity. We assume that permittivity is characterized by the diagonal matrix $\epsilon=\mathrm{diag} (\varepsilon_1,\varepsilon_1,\varepsilon_2)$, with the functions $\varepsilon_1$ and $\varepsilon_2$ equal to positive constants beyond a bounded convex domain $\Omega\subset\Bbb{R}^3$. Two modes of traveling plane waves exist in a homogeneous anisotropic medium. The structure is studied of the solutions related to the traveling plane waves incident from infinity on an inhomogeneity located in $\Omega$.
Keywords: Maxwell's equations, anisotropy, plane wave, structure of a solution.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00120_а
The author was supported by the Russian Foundation for Basic Research (Grant 17–01–00120).
Received: 15.02.2019
Revised: 15.02.2019
Accepted: 12.03.2019
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 4, Pages 661–672
DOI: https://doi.org/10.1134/S0037446619040116
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. G. Romanov, “Plane wave solutions to the equations of electrodynamics in an anisotropic medium”, Sibirsk. Mat. Zh., 60:4 (2019), 845–858; Siberian Math. J., 60:4 (2019), 661–672
Citation in format AMSBIB
\Bibitem{Rom19}
\by V.~G.~Romanov
\paper Plane wave solutions to the equations of electrodynamics in an anisotropic medium
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 4
\pages 845--858
\mathnet{http://mi.mathnet.ru/smj3119}
\crossref{https://doi.org/10.33048/smzh.2019.60.411}
\elib{https://elibrary.ru/item.asp?id=41628144}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 4
\pages 661--672
\crossref{https://doi.org/10.1134/S0037446619040116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000480738600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070685782}
Linking options:
  • https://www.mathnet.ru/eng/smj3119
  • https://www.mathnet.ru/eng/smj/v60/i4/p845
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :112
    References:30
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024