Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 4, Pages 734–750
DOI: https://doi.org/10.33048/smzh.2019.60.403
(Mi smj3111)
 

This article is cited in 4 scientific papers (total in 4 papers)

The partial clone of linear formulas

K. Denecke

University of Potsdam, Institute of Mathematics, Potsdam, Germany
Full-text PDF (494 kB) Citations (4)
References:
Abstract: A term $t$ is linear if no variable occurs more than once in $t$. An identity $s\approx t$ is said to be linear if $s$ and $t$ are linear terms. Identities are particular formulas. As for terms superposition operations can be defined for formulas too. We define the arbitrary linear formulas and seek for a condition for the set of all linear formulas to be closed under superposition. This will be used to define the partial superposition operations on the set of linear formulas and a partial many-sorted algebra ${\operatorname{Formclone}}_{\operatorname{lin}}(\tau,\tau')$. This algebra has similar properties with the partial many-sorted clone of all linear terms. We extend the concept of a hypersubstitution of type $\tau$ to the linear hypersubstitutions of type $(\tau,\tau')$ for algebraic systems. The extensions of linear hypersubstitutions of type $\tau,\tau'$ send linear formulas to linear formulas, presenting weak endomorphisms of ${\operatorname{Formclone}}_{\operatorname{lin}}(\tau,\tau')$.
Keywords: term, formula, superposition, linear term, linear formula, clone, partial clone, linear hypersubstitution.
Received: 16.02.2018
Revised: 16.02.2018
Accepted: 23.05.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 4, Pages 572–584
DOI: https://doi.org/10.1134/S0037446619040037
Bibliographic databases:
Document Type: Article
UDC: 512.57
Language: Russian
Citation: K. Denecke, “The partial clone of linear formulas”, Sibirsk. Mat. Zh., 60:4 (2019), 734–750; Siberian Math. J., 60:4 (2019), 572–584
Citation in format AMSBIB
\Bibitem{Den19}
\by K.~Denecke
\paper The partial clone of linear formulas
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 4
\pages 734--750
\mathnet{http://mi.mathnet.ru/smj3111}
\crossref{https://doi.org/10.33048/smzh.2019.60.403}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 4
\pages 572--584
\crossref{https://doi.org/10.1134/S0037446619040037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000480738600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070722061}
Linking options:
  • https://www.mathnet.ru/eng/smj3111
  • https://www.mathnet.ru/eng/smj/v60/i4/p734
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :105
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024