Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 4, Pages 724–733
DOI: https://doi.org/10.33048/smzh.2019.60.402
(Mi smj3110)
 

This article is cited in 4 scientific papers (total in 4 papers)

The operator $L_n$ on quasivarieties of universal algebras

A. I. Budkin

Altai State University, Barnaul, Russia
Full-text PDF (441 kB) Citations (4)
References:
Abstract: Let $n$ be an arbitrary natural and let $\mathcal{M}$ be a class of universal algebras. Denote by $L_n(\mathcal{M})$ the class of algebras $G$ such that, for every $n$-generated subalgebra $A$ of $G$, the coset $a/R$ ($a\in A$) modulo the least congruence $R$ including $A\times A$ is an algebra in $\mathcal{M}$. We investigate the classes $L_n(\mathcal{M})$. In particular, we prove that if $\mathcal{M}$ is a quasivariety then $L_n(\mathcal{M})$ is a quasivariety. The analogous result is obtained for universally axiomatizable classes of algebras. We show also that if $\mathcal{M}$ is a congruence-permutable variety of algebras then $L_n(\mathcal{M})$ is a variety. We find a variety $\mathcal{P}$ of semigroups such that $L_1(\mathcal{P})$ is not a variety.
Keywords: quasivariety, variety, universal algebra, congruence-permutable variety, Levi class.
Received: 23.10.2018
Revised: 23.10.2018
Accepted: 19.12.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 4, Pages 565–571
DOI: https://doi.org/10.1134/S0037446619040025
Bibliographic databases:
Document Type: Article
UDC: 512.57
Language: Russian
Citation: A. I. Budkin, “The operator $L_n$ on quasivarieties of universal algebras”, Sibirsk. Mat. Zh., 60:4 (2019), 724–733; Siberian Math. J., 60:4 (2019), 565–571
Citation in format AMSBIB
\Bibitem{Bud19}
\by A.~I.~Budkin
\paper The operator $L_n$ on quasivarieties of universal algebras
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 4
\pages 724--733
\mathnet{http://mi.mathnet.ru/smj3110}
\crossref{https://doi.org/10.33048/smzh.2019.60.402}
\elib{https://elibrary.ru/item.asp?id=41628101}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 4
\pages 565--571
\crossref{https://doi.org/10.1134/S0037446619040025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000480738600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070681944}
Linking options:
  • https://www.mathnet.ru/eng/smj3110
  • https://www.mathnet.ru/eng/smj/v60/i4/p724
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024