Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 3, Pages 630–639
DOI: https://doi.org/10.33048/smzh.2019.60.311
(Mi smj3099)
 

Decompositions of dual automorphism invariant modules over semiperfect rings

Y. Kuratomi

Department of Mathematics, Faculty of Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
References:
Abstract: A module $M$ is called dual automorphism invariant if whenever $X_1$ and $X_2$ are small submodules of $M$, then each epimorphism $f: M/X_1\to M/X_2$ lifts to an endomorphism $g$ of $M$. A module $M$ is said to be $\mathrm{d}$-square free (dual square free) if whenever some factor module of $M$ is isomorphic to $N^2$ for a module $N$ then $N=0$. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable $\mathrm{d}$-square free modules. Moreover, we prove that for each module $M$ over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g., $M$ is a finitely generated module), $M$ is dual automorphism invariant iff $M$ is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective.
Keywords: dual automorphism invariant module, pseudoprojective module, dual square free module, finite internal exchange property, (semi)perfect ring.
Funding agency Grant number
Japan Society for the Promotion of Science 15K04821
This work was supported by JSPS KAKENHI Grant Number 15K04821.
Received: 19.07.2018
Revised: 15.11.2018
Accepted: 19.12.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 3, Pages 490–496
DOI: https://doi.org/10.1134/S003744661903011X
Bibliographic databases:
Document Type: Article
UDC: 512.55
MSC: 35R30
Language: Russian
Citation: Y. Kuratomi, “Decompositions of dual automorphism invariant modules over semiperfect rings”, Sibirsk. Mat. Zh., 60:3 (2019), 630–639; Siberian Math. J., 60:3 (2019), 490–496
Citation in format AMSBIB
\Bibitem{Kur19}
\by Y.~Kuratomi
\paper Decompositions of dual automorphism invariant modules over semiperfect rings
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 3
\pages 630--639
\mathnet{http://mi.mathnet.ru/smj3099}
\crossref{https://doi.org/10.33048/smzh.2019.60.311}
\elib{https://elibrary.ru/item.asp?id=42062355}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 3
\pages 490--496
\crossref{https://doi.org/10.1134/S003744661903011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471617300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067284390}
Linking options:
  • https://www.mathnet.ru/eng/smj3099
  • https://www.mathnet.ru/eng/smj/v60/i3/p630
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :33
    References:55
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024