Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 3, Pages 610–629
DOI: https://doi.org/10.33048/smzh.2019.60.310
(Mi smj3098)
 

This article is cited in 1 scientific paper (total in 1 paper)

Multianisotropic integral operators defined by regular equations

G. A. Karapetyan, H. A. Petrosyan

Russian-Armenian University, Yerevan, Armenia
Full-text PDF (389 kB) Citations (1)
References:
Abstract: The article continues the authors' previous research, where they are proved the well-posed solvability of regular equations in $\mathbb{R}^n$ and the Dirichlet problem in $\mathbb{R}_+^n$. We define a scale of weighted spaces in which the regular operators are correctly solvable. Approximate solutions to the corresponding Dirichlet problem are constructed with the use of integral operators.
Keywords: well-posed solvability, multianisotropic kernel, regular operator, integral representation of functions.
Funding agency Grant number
Ministry of Education and Science of the Republic of Armenia 18RF-004
The authors were supported by the State Science Committee of the Ministry for Higher Education and Science and the Russian Foundation for Basic Research (Grant 18RF-004).
Received: 17.03.2018
Revised: 10.10.2018
Accepted: 17.10.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 3, Pages 472–489
DOI: https://doi.org/10.1134/S0037446619030108
Bibliographic databases:
Document Type: Article
UDC: 517.518.23
Language: Russian
Citation: G. A. Karapetyan, H. A. Petrosyan, “Multianisotropic integral operators defined by regular equations”, Sibirsk. Mat. Zh., 60:3 (2019), 610–629; Siberian Math. J., 60:3 (2019), 472–489
Citation in format AMSBIB
\Bibitem{KarPet19}
\by G.~A.~Karapetyan, H.~A.~Petrosyan
\paper Multianisotropic integral operators defined by regular equations
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 3
\pages 610--629
\mathnet{http://mi.mathnet.ru/smj3098}
\crossref{https://doi.org/10.33048/smzh.2019.60.310}
\elib{https://elibrary.ru/item.asp?id=41688986}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 3
\pages 472--489
\crossref{https://doi.org/10.1134/S0037446619030108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471617300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067413564}
Linking options:
  • https://www.mathnet.ru/eng/smj3098
  • https://www.mathnet.ru/eng/smj/v60/i3/p610
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :54
    References:57
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024