Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 3, Pages 506–517
DOI: https://doi.org/10.33048/smzh.2019.60.303
(Mi smj3091)
 

This article is cited in 2 scientific papers (total in 2 papers)

On $\sigma$-embedded and $\sigma$-$n$-embedded subgroups of finite groups

V. Amjida, W. Guoa, B. Lib

a School of Mathematical Sciences, University of Science and Technology of China, Hefei, P. R. China
b College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, P. R. China
Full-text PDF (343 kB) Citations (2)
References:
Abstract: Let $G$ be a finite group, and let $\sigma=\{\sigma_i | i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $\sigma(G)=\{\sigma_i | \sigma_i\cap\pi(G)\ne\varnothing\}$. A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\sigma$-set of $G$ if each nonidentity member of $\mathcal{H}$ is a Hall $\sigma_i$-subgroup of $G$ and $\mathcal{H}$ has exactly one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in \sigma(G)$. A subgroup $H$ of $G$ is said to be $\sigma$-permutable in $G$ if $G$ possesses a complete Hall $\sigma$-set $\mathcal{H}$ such that $HA^x=A^xH$ for all $A\in\mathcal{H}$ and $G$. A subgroup $H$ of $G$ is said to be $\sigma$-$n$-embedded in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT = H^G$ and $H\cap T\leqslant H_{\sigma G}$, where $H_{\sigma G}$ is the subgroup of $H$ generated by all those subgroups of $H$ that are $\sigma$-permutable in $G$. A subgroup $H$ of $G$ is said to be $\sigma$-embedded in $G$ if there exists a $\sigma$-permutable subgroup $T$ of $G$ such that $HT = H^{\sigma G}$ and $H\cap H\leqslant H_{\sigma G}$, where $H^{\sigma G}$ is the intersection of all $\sigma$-permutable subgroups of $G$ containing $H$. We study the structure of finite groups under the condition that some given subgroups of $G$ are $\sigma$-embedded and $\sigma$-$n$-embedded. In particular, we give the conditions for a normal subgroup of $G$ to be hypercyclically embedded.
Keywords: finite group, $\sigma$-embedded subgroup, $\sigma$-$n$-embedded subgroup, supersoluble, hypercyclically embedded.
Funding agency Grant number
National Natural Science Foundation of China 11771409
Anhui Initiative in Quantum Information Technologies AHY150200
The authors were supported by the NNSF of China (11771409), the Wu Wen-Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences and Anhui Initiative in Quantum Information Technologies (AHY150200).
Received: 19.07.2018
Revised: 16.10.2018
Accepted: 17.10.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 3, Pages 389–397
DOI: https://doi.org/10.1134/S0037446619030030
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 35R30
Language: Russian
Citation: V. Amjid, W. Guo, B. Li, “On $\sigma$-embedded and $\sigma$-$n$-embedded subgroups of finite groups”, Sibirsk. Mat. Zh., 60:3 (2019), 506–517; Siberian Math. J., 60:3 (2019), 389–397
Citation in format AMSBIB
\Bibitem{AmjGuoLi19}
\by V.~Amjid, W.~Guo, B.~Li
\paper On $\sigma$-embedded and $\sigma$-$n$-embedded subgroups of finite groups
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 3
\pages 506--517
\mathnet{http://mi.mathnet.ru/smj3091}
\crossref{https://doi.org/10.33048/smzh.2019.60.303}
\elib{https://elibrary.ru/item.asp?id=42064766}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 3
\pages 389--397
\crossref{https://doi.org/10.1134/S0037446619030030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471617300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067290127}
Linking options:
  • https://www.mathnet.ru/eng/smj3091
  • https://www.mathnet.ru/eng/smj/v60/i3/p506
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :50
    References:62
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024