Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 3, Pages 489–505
DOI: https://doi.org/10.33048/smzh.2019.60.302
(Mi smj3090)
 

This article is cited in 2 scientific papers (total in 2 papers)

On decidability of list structures

S. A. Aleksandrovaa, N. A. Bazhenovba

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (366 kB) Citations (2)
References:
Abstract: The paper studies computability-theoretic complexity of various structures that are based on the list data type. The list structure over a structure $S$ consists of the two sorts of elements: The first sort is atoms from $S$, and the second sort is finite linear lists of atoms. The signature of the list structure contains the signature of $S$, the empty list $nil$, and the binary operation of appending an atom to a list. The enriched list structure over $S$ is obtained by enriching the signature with additional functions and relations: obtaining a head of a list, getting a tail of a list, "an atom $x$ occurs in a list $Y$," and "a list $X$ is an initial segment of a list $Y$." We prove that the first-order theory of the enriched list structure over $(\omega, +)$, i.e. the monoid of naturals under addition, is computably isomorphic to the first-order arithmetic. In particular, this implies that the transformation of a structure $S$ into the enriched list structure over $S$ does not always preserve the decidability of first-order theories. We show that the list structure over $S$ can be presented by a finite word automaton if and only if $S$ is finite.
Keywords: linear list, list structure, decidable structure, automatic structure, tree automatic structure.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-543015_р_мол_а
Russian Science Foundation 18-11-00028
S. A. Aleksandrova was supported by the Russian Foundation for Basic Research (Grant 18-41-543015 r_mol_a). N. A. Bazhenov was supported by the Russian Science Foundation (Grant 18-11-00028).
Received: 10.07.2018
Revised: 10.07.2018
Accepted: 19.12.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 3, Pages 377–388
DOI: https://doi.org/10.1134/S0037446619030029
Bibliographic databases:
Document Type: Article
UDC: 510.674+519.713
Language: Russian
Citation: S. A. Aleksandrova, N. A. Bazhenov, “On decidability of list structures”, Sibirsk. Mat. Zh., 60:3 (2019), 489–505; Siberian Math. J., 60:3 (2019), 377–388
Citation in format AMSBIB
\Bibitem{AleBaz19}
\by S.~A.~Aleksandrova, N.~A.~Bazhenov
\paper On decidability of list structures
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 3
\pages 489--505
\mathnet{http://mi.mathnet.ru/smj3090}
\crossref{https://doi.org/10.33048/smzh.2019.60.302}
\elib{https://elibrary.ru/item.asp?id=41685143}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 3
\pages 377--388
\crossref{https://doi.org/10.1134/S0037446619030029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471617300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067383505}
Linking options:
  • https://www.mathnet.ru/eng/smj3090
  • https://www.mathnet.ru/eng/smj/v60/i3/p489
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :138
    References:45
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024