Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 3, Pages 483–488
DOI: https://doi.org/10.33048/smzh.2019.60.301
(Mi smj3089)
 

This article is cited in 1 scientific paper (total in 1 paper)

Finite homomorphic images of groups of finite rank

D. N. Azarova, N. S. Romanovskiibc

a Ivanovo State University, Ivanovo, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (244 kB) Citations (1)
References:
Abstract: Let $\pi$ be a finite set of primes. We prove that each soluble group of finite rank contains a finite index subgroup whose every finite homomorphic $\pi$-image is nilpotent. A similar assertion is proved for a finitely generated group of finite rank. These statements are obtained as a consequence of the following result of the article: Each soluble pro-$\pi$-group of finite rank has an open normal pronilpotent subgroup.
Keywords: group of finite rank, soluble group, homomorphic image of a group, residual finiteness, profinite group.
Received: 17.07.2018
Revised: 11.02.2019
Accepted: 12.03.2019
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 3, Pages 373–376
DOI: https://doi.org/10.1134/S0037446619030017
Bibliographic databases:
Document Type: Article
UDC: 512.5
MSC: 35R30
Language: Russian
Citation: D. N. Azarov, N. S. Romanovskii, “Finite homomorphic images of groups of finite rank”, Sibirsk. Mat. Zh., 60:3 (2019), 483–488; Siberian Math. J., 60:3 (2019), 373–376
Citation in format AMSBIB
\Bibitem{AzaRom19}
\by D.~N.~Azarov, N.~S.~Romanovskii
\paper Finite homomorphic images of groups of finite rank
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 3
\pages 483--488
\mathnet{http://mi.mathnet.ru/smj3089}
\crossref{https://doi.org/10.33048/smzh.2019.60.301}
\elib{https://elibrary.ru/item.asp?id=41637524}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 3
\pages 373--376
\crossref{https://doi.org/10.1134/S0037446619030017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471617300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067294069}
Linking options:
  • https://www.mathnet.ru/eng/smj3089
  • https://www.mathnet.ru/eng/smj/v60/i3/p483
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :53
    References:56
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024