Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 2, Pages 441–460
DOI: https://doi.org/10.33048/smzh.2019.60.215
(Mi smj3087)
 

This article is cited in 7 scientific papers (total in 7 papers)

Construction of stable rank $2$ bundles on $\mathbb{P}^3$ via symplectic bundles

A. S. Tikhomirova, S. A. Tikhomirovbc, D. A. Vassilieva

a National Research University Higher School of Economics, Moscow, Russia
b Yaroslavl State Pedagogical University named after K. D. Ushinskii, Yaroslavl, Russia
c Koryazhma Branch of Northern (Arctic) Federal University named after M. V. Lomonosov, Koryazhma, Russia
Full-text PDF (393 kB) Citations (7)
References:
Abstract: In this article we study the Gieseker–Maruyama moduli spaces $\mathcal{B}(e, n)$ of stable rank $2$ algebraic vector bundles with Chern classes $c_1 = e \in \{-1, 0\}$ and $c_2 = n \geqslant 1$ on the projective space $\mathbb{P}^3$. We construct the two new infinite series $\Sigma_0$ and $\Sigma_1$ of irreducible components of the spaces $\mathcal{B}(e, n)$ for $e = 0$ and $e = -1$, respectively. General bundles of these components are obtained as cohomology sheaves of monads whose middle term is a rank $4$ symplectic instanton bundle in case $e = 0$, respectively, twisted symplectic bundle in case $e = -1$. We show that the series $\Sigma_0$ contains components for all big enough values of n (more precisely, at least for $n \geqslant 146$). $\Sigma_0$ yields the next example, after the series of instanton components, of an infinite series of components of $\mathcal{B}(0, n)$ satisfying this property.
Keywords: rank $2$ bundles, moduli of stable bundles, symplectic bundles.
Funding agency Grant number
HSE Basic Research Program 18-01-0037
Ministry of Education and Science of the Russian Federation
A. S. Tikhomirov was supported by the Academic Fund Program at the National Research University Higher School of Economics in 2018–2019 (Grant 18–01–0037). D. A. Vassiliev completed the research within the framework of the main research program of the National Research University Higher School of Economics. A. S. Tikhomirov and D. A. Vassiliev were supported by funding within the framework of the State Maintenance Program for the Leading Universities of the Russian Federation 5–100.
Received: 12.04.2018
Revised: 25.11.2018
Accepted: 19.12.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 2, Pages 343–358
DOI: https://doi.org/10.1134/S0037446619020150
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: 35R30
Language: Russian
Citation: A. S. Tikhomirov, S. A. Tikhomirov, D. A. Vassiliev, “Construction of stable rank $2$ bundles on $\mathbb{P}^3$ via symplectic bundles”, Sibirsk. Mat. Zh., 60:2 (2019), 441–460; Siberian Math. J., 60:2 (2019), 343–358
Citation in format AMSBIB
\Bibitem{TikTikVas19}
\by A.~S.~Tikhomirov, S.~A.~Tikhomirov, D.~A.~Vassiliev
\paper Construction of stable rank $2$ bundles on $\mathbb{P}^3$ via symplectic bundles
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 2
\pages 441--460
\mathnet{http://mi.mathnet.ru/smj3087}
\crossref{https://doi.org/10.33048/smzh.2019.60.215}
\elib{https://elibrary.ru/item.asp?id=38672440}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 2
\pages 343--358
\crossref{https://doi.org/10.1134/S0037446619020150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465640100015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85063998516}
Linking options:
  • https://www.mathnet.ru/eng/smj3087
  • https://www.mathnet.ru/eng/smj/v60/i2/p441
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:370
    Full-text PDF :109
    References:39
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024