Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 2, Pages 351–359
DOI: https://doi.org/10.33048/smzh.2019.60.207
(Mi smj3079)
 

Light minor $5$-stars in $3$-polytopes with minimum degree $5$

O. V. Borodin, A. O. Ivanova

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: Attempting to solve the Four Color Problem in 1940, Henry Lebesgue gave an approximate description of the neighborhoods of $5$-vertices in the class $\mathbf{P}_5$ of $3$-polytopes with minimum degree $5$. This description depends on $32$ main parameters. Not many precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in $\mathbf{P}_5$. Given a $3$-polytope $P$, by $w(P)$ denote the minimum of the maximum degree-sum (weight) of the neighborhoods of $5$-vertices (minor $5$-stars) in $P$. In 1996, Jendrol’ and Madaras showed that if a polytope $P$ in $\mathbf{P}_5$ is allowed to have a $5$-vertex adjacent to four $5$-vertices (called a minor $(5, 5, 5, 5, \infty)$-star), then $w(P)$ can be arbitrarily large. For each $P^*$ in $\mathbf{P}_5$ with neither vertices of degree $6$ and $7$ nor minor $(5, 5, 5, 5, \infty)$-star, it follows from Lebesgue's Theorem that $w(P^*) \leqslant 51$. We prove that every such polytope $P^*$ satisfies $w(P^*) \leqslant 42$, which bound is sharp. This result is also best possible in the sense that if $6$-vertices are allowed but $7$-vertices forbidden, or vice versa; then the weight of all minor $5$-stars in $\mathbf{P}_5$ under the absence of minor $(5, 5, 5, 5, \infty)$-stars can reach $43$ or $44$, respectively.
Keywords: planar map, planar graph, $3$-polytope, structural properties, $5$-star.
Funding agency Grant number
Russian Science Foundation 16-11-10054
The authors were funded by the Russian Science Foundation (Grant 16-11-10054).
Received: 05.07.2018
Revised: 05.07.2018
Accepted: 17.08.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 2, Pages 272–278
DOI: https://doi.org/10.1134/S0037446619020071
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 35R30
Language: Russian
Citation: O. V. Borodin, A. O. Ivanova, “Light minor $5$-stars in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 60:2 (2019), 351–359; Siberian Math. J., 60:2 (2019), 272–278
Citation in format AMSBIB
\Bibitem{BorIva19}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Light minor $5$-stars in $3$-polytopes with minimum degree~$5$
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 2
\pages 351--359
\mathnet{http://mi.mathnet.ru/smj3079}
\crossref{https://doi.org/10.33048/smzh.2019.60.207}
\elib{https://elibrary.ru/item.asp?id=38677843}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 2
\pages 272--278
\crossref{https://doi.org/10.1134/S0037446619020071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465640100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064896692}
Linking options:
  • https://www.mathnet.ru/eng/smj3079
  • https://www.mathnet.ru/eng/smj/v60/i2/p351
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :33
    References:28
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024