Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 2, Pages 306–322
DOI: https://doi.org/10.33048/smzh.2019.60.205
(Mi smj3077)
 

Lorentzian manifolds close to Euclidean space

V. N. Berestovskiiab

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: We study the Lorentzian manifolds $M_1$, $M_2$, $M_3$, and $M_4$ obtained by small changes of the standard Euclidean metric on $\mathbb{R}^4$ with the punctured origin $O$. The spaces $M_1$ and $M_4$ are closed isotropic space-time models. The manifolds $M_3$ and $M_4$ (respectively, $M_1$ and $M_2$) are geodesically (non)complete; $M_1$ and $M_4$ are globally hyperbolic, while $M_2$ and $M_3$ are not chronological. We found the Lie algebras of isometry and homothety groups for all manifolds; the curvature, Ricci, Einstein, Weyl, and energy-momentum tensors. It is proved that $M_1$ and $M_4$ are conformally flat, while $M_2$ and $M_3$ are not conformally flat and their Weyl tensor has the first Petrov type.
Keywords: closed isotropic model, density, Einstein tensor, energy-momentum tensor, homothety group, isometry group, pressure, Weyl tensor.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.3087.2017/4.6
The author was supported by the Ministry of Education and Science of the Russian Federation (Grant 1.3087.2017/4.6).
Received: 21.08.2018
Revised: 17.12.2018
Accepted: 19.12.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 2, Pages 235–248
DOI: https://doi.org/10.1134/S0037446619020058
Bibliographic databases:
Document Type: Article
UDC: 513.813:512.972+513.814+530.12
Language: Russian
Citation: V. N. Berestovskii, “Lorentzian manifolds close to Euclidean space”, Sibirsk. Mat. Zh., 60:2 (2019), 306–322; Siberian Math. J., 60:2 (2019), 235–248
Citation in format AMSBIB
\Bibitem{Ber19}
\by V.~N.~Berestovskii
\paper Lorentzian manifolds close to Euclidean space
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 2
\pages 306--322
\mathnet{http://mi.mathnet.ru/smj3077}
\crossref{https://doi.org/10.33048/smzh.2019.60.205}
\elib{https://elibrary.ru/item.asp?id=38676795}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 2
\pages 235--248
\crossref{https://doi.org/10.1134/S0037446619020058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465640100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064807004}
Linking options:
  • https://www.mathnet.ru/eng/smj3077
  • https://www.mathnet.ru/eng/smj/v60/i2/p306
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :102
    References:53
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024