Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 1, Pages 201–213
DOI: https://doi.org/10.33048/smzh.2019.60.117
(Mi smj3070)
 

This article is cited in 3 scientific papers (total in 3 papers)

Reduction of vector boundary value problems on Riemann surfaces to one-dimensional problems

E. V. Semenkoab

a Novosibirsk State Technical University, Novosibirsk, Russia
b Novosibirsk State Pedagogical University, Novosibirsk, Russia
Full-text PDF (293 kB) Citations (3)
References:
Abstract: This article lays foundations for the theory of vector conjugation boundary value problems on a compact Riemann surface of arbitrary positive genus. The main constructions of the classical theory of vector boundary value problems on the plane are carried over to Riemann surfaces: reduction of the problem to a system of integral equations on a contour, the concepts of companion and adjoint problems, as well as their connection with the original problem, the construction of a meromorphic matrix solution. We show that each vector conjugation boundary value problem reduces to a problem with a triangular coefficient matrix, which in fact reduces the problem to a succession of one-dimensional problems. This reduction to the well-understood one-dimensional problems opens up a path towards a complete construction of the general solution of vector boundary value problems on Riemann surfaces.
Keywords: Riemann surface, vector conjugation boundary value problem, companion problem, adjoint problem, holomorphic vector bundle.
Received: 09.01.2018
Revised: 20.08.2018
Accepted: 17.10.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 1, Pages 153–163
DOI: https://doi.org/10.1134/S0037446619010178
Bibliographic databases:
Document Type: Article
UDC: 517.53/55
MSC: 35R30
Language: Russian
Citation: E. V. Semenko, “Reduction of vector boundary value problems on Riemann surfaces to one-dimensional problems”, Sibirsk. Mat. Zh., 60:1 (2019), 201–213; Siberian Math. J., 60:1 (2019), 153–163
Citation in format AMSBIB
\Bibitem{Sem19}
\by E.~V.~Semenko
\paper Reduction of vector boundary value problems on Riemann surfaces to one-dimensional problems
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 1
\pages 201--213
\mathnet{http://mi.mathnet.ru/smj3070}
\crossref{https://doi.org/10.33048/smzh.2019.60.117}
\elib{https://elibrary.ru/item.asp?id=38682546}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 1
\pages 153--163
\crossref{https://doi.org/10.1134/S0037446619010178}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464720000017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065238324}
Linking options:
  • https://www.mathnet.ru/eng/smj3070
  • https://www.mathnet.ru/eng/smj/v60/i1/p201
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :71
    References:37
    First page:8
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025