Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 1, Pages 141–147
DOI: https://doi.org/10.33048/smzh.2019.60.112
(Mi smj3065)
 

Absence of nontrivial symmetries to the heat equation in Goursat groups of dimension at least $4$

M. V. Kuznetsov

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: Using the extension method, we study the one-parameter symmetry groups of the heat equation $\partial_{t} p=\Delta p$, where $\Delta=X_{1}^{2}+X_{2}^{2}$ is the sub-Laplacian constructed by a Goursat distribution $\operatorname{span} (\lbrace X_{1},X_{2} \rbrace)$ in $\mathbb{R}^n$, where the vector fields $X_1$ and $X_2$ satisfy the commutation relations $[X_{1},X_{j}]=X_{j+1}$ (where $X_{n+1}=0$) and $[X_{j},X_{k}]=0$ for $j \geq 1$ and $k \geq 1$. We show that there are no such groups for $n \geq 4$ (with exception of the linear transformations of solutions which are admitted by every linear equation).
Keywords: sub-Laplacian, nilpotent Lie group, extension method.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.12875.2018/12.1
The author was supported by the Ministry of Education and Science of the Russian Federation (Grant 1.12875.2018/12.1).
Received: 09.04.2018
Revised: 18.07.2018
Accepted: 17.10.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 1, Pages 108–113
DOI: https://doi.org/10.1134/S0037446619010129
Bibliographic databases:
Document Type: Article
UDC: 512.813.52+514.763.85
MSC: 35R30
Language: Russian
Citation: M. V. Kuznetsov, “Absence of nontrivial symmetries to the heat equation in Goursat groups of dimension at least $4$”, Sibirsk. Mat. Zh., 60:1 (2019), 141–147; Siberian Math. J., 60:1 (2019), 108–113
Citation in format AMSBIB
\Bibitem{Kuz19}
\by M.~V.~Kuznetsov
\paper Absence of nontrivial symmetries to the heat equation in Goursat groups of dimension at least~$4$
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 1
\pages 141--147
\mathnet{http://mi.mathnet.ru/smj3065}
\crossref{https://doi.org/10.33048/smzh.2019.60.112}
\elib{https://elibrary.ru/item.asp?id=38682396}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 1
\pages 108--113
\crossref{https://doi.org/10.1134/S0037446619010129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464720000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065232358}
Linking options:
  • https://www.mathnet.ru/eng/smj3065
  • https://www.mathnet.ru/eng/smj/v60/i1/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :80
    References:34
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024