Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2019, Volume 60, Number 1, Pages 109–117
DOI: https://doi.org/10.33048/smzh.2019.60.109
(Mi smj3062)
 

This article is cited in 3 scientific papers (total in 3 papers)

Unique determination of locally convex surfaces with boundary and positive curvature of genus $p\geqslant 0$

S. B. Klimentovab

a Southern Federal University, Rostov-on-Don, Russia
b Southern Mathematical Institute, Vladikavkaz, Russia
Full-text PDF (561 kB) Citations (3)
References:
Abstract: We prove the next result. If two isometric regular surfaces with regular boundaries, of an arbitrary finite genus, and positive Gaussian curvature in the three-dimensional Euclidean space, consist of two congruent arcs corresponding under the isometry (lying on the boundaries of these surfaces or inside these surfaces) then these surfaces are congruent.
Keywords: bending of a surface, unique determination.
Received: 19.04.2018
Revised: 08.10.2018
Accepted: 17.10.2018
English version:
Siberian Mathematical Journal, 2019, Volume 60, Issue 1, Pages 82–88
DOI: https://doi.org/10.1134/S0037446619010099
Bibliographic databases:
Document Type: Article
UDC: 514.752.435
MSC: 35R30
Language: Russian
Citation: S. B. Klimentov, “Unique determination of locally convex surfaces with boundary and positive curvature of genus $p\geqslant 0$”, Sibirsk. Mat. Zh., 60:1 (2019), 109–117; Siberian Math. J., 60:1 (2019), 82–88
Citation in format AMSBIB
\Bibitem{Kli19}
\by S.~B.~Klimentov
\paper Unique determination of locally convex surfaces with boundary and positive curvature of genus~$p\geqslant 0$
\jour Sibirsk. Mat. Zh.
\yr 2019
\vol 60
\issue 1
\pages 109--117
\mathnet{http://mi.mathnet.ru/smj3062}
\crossref{https://doi.org/10.33048/smzh.2019.60.109}
\elib{https://elibrary.ru/item.asp?id=38682300}
\transl
\jour Siberian Math. J.
\yr 2019
\vol 60
\issue 1
\pages 82--88
\crossref{https://doi.org/10.1134/S0037446619010099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464720000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065230544}
Linking options:
  • https://www.mathnet.ru/eng/smj3062
  • https://www.mathnet.ru/eng/smj/v60/i1/p109
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :55
    References:49
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024