Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 6, Pages 1338–1350
DOI: https://doi.org/10.17377/smzh.2018.59.609
(Mi smj3047)
 

This article is cited in 15 scientific papers (total in 15 papers)

The fixed points of contractions of $f$-quasimetric spaces

E. S. Zhukovskiy

Tambov State University named after G. R. Derzhavin, Tambov, Russia
References:
Abstract: The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of $(q_1,q_2)$-quasimetric spaces. This article addresses similar questions for $f$-quasimetric spaces.
Given a function $f\colon\mathbb R_+^2\to\mathbb R_+$ with $f(r_1,r_2)\to0$ as $(r_1,r_2)\to(0,0)$, an $f$-quasimetric space is a nonempty set $X$ with a possibly asymmetric distance function $\rho\colon X^2\to\mathbb R_+$ satisfying the $f$-triangle inequality: $\rho(x,z)\leq f(\rho(x,y),\rho(y,z))$ for $x,y,z\in X$. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii's and Browder's Theorems on generalized contractions, to mappings of $f$-quasimetric spaces.
Keywords: $f$-quasimetric, asymptotic triangle inequality, fixed point, generalized contraction.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00553
17-41-680975
17-51-12064
Ministry of Education and Science of the Russian Federation 3.8515.2017/БЧ
The author was supported by the Russian Foundation for Basic Research (Grants 17-01-00553, 17-41-680975, and 17-51-12064) and the Ministry of Science and Education of the Russian Federation (Task No. 3.8515.2017/BP).
Received: 11.01.2018
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 6, Pages 1063–1072
DOI: https://doi.org/10.1134/S0037446618060095
Bibliographic databases:
Document Type: Article
UDC: 517.988.63+515.124
MSC: 35R30
Language: Russian
Citation: E. S. Zhukovskiy, “The fixed points of contractions of $f$-quasimetric spaces”, Sibirsk. Mat. Zh., 59:6 (2018), 1338–1350; Siberian Math. J., 59:6 (2018), 1063–1072
Citation in format AMSBIB
\Bibitem{Zhu18}
\by E.~S.~Zhukovskiy
\paper The fixed points of contractions of $f$-quasimetric spaces
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 6
\pages 1338--1350
\mathnet{http://mi.mathnet.ru/smj3047}
\crossref{https://doi.org/10.17377/smzh.2018.59.609}
\elib{https://elibrary.ru/item.asp?id=38643357}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 6
\pages 1063--1072
\crossref{https://doi.org/10.1134/S0037446618060095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454441000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059741625}
Linking options:
  • https://www.mathnet.ru/eng/smj3047
  • https://www.mathnet.ru/eng/smj/v59/i6/p1338
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:415
    Full-text PDF :259
    References:59
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024