Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 6, Pages 1268–1278
DOI: https://doi.org/10.17377/smzh.2018.59.604
(Mi smj3042)
 

A complete topological classification of the space of Baire functions on ordinals

L. V. Genze, S. P. Gulko, T. E. Khmyleva

Tomsk State University, Tomsk, Russia
References:
Abstract: Considering the spaces $B_p[1,\alpha]$ of all Baire functions $x\colon[1,\alpha]\to\mathbb R$ on the ordinal segments $[1,\alpha]$ that are endowed with the topology of pointwise convergence, we give a complete topological classification of these spaces.
Keywords: Baire $1$-function, space of Baire functions, topology of pointwise convergence, homeomorphism, ordinal segment, order topology, real compactness.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-18051
The authors were supported by the Russian Foundation for Basic Research (Grant 17-51-18051).
Received: 11.02.2018
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 6, Pages 1006–1013
DOI: https://doi.org/10.1134/S0037446618060046
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 35R30
Language: Russian
Citation: L. V. Genze, S. P. Gulko, T. E. Khmyleva, “A complete topological classification of the space of Baire functions on ordinals”, Sibirsk. Mat. Zh., 59:6 (2018), 1268–1278; Siberian Math. J., 59:6 (2018), 1006–1013
Citation in format AMSBIB
\Bibitem{GenGulKhm18}
\by L.~V.~Genze, S.~P.~Gulko, T.~E.~Khmyleva
\paper A complete topological classification of the space of Baire functions on ordinals
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 6
\pages 1268--1278
\mathnet{http://mi.mathnet.ru/smj3042}
\crossref{https://doi.org/10.17377/smzh.2018.59.604}
\elib{https://elibrary.ru/item.asp?id=38651778}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 6
\pages 1006--1013
\crossref{https://doi.org/10.1134/S0037446618060046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454441000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059783854}
Linking options:
  • https://www.mathnet.ru/eng/smj3042
  • https://www.mathnet.ru/eng/smj/v59/i6/p1268
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :118
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024