Abstract:
We calculate asymptotics for the Kolmogorov $\varepsilon$-entropy of the compact set of infinitely differentiable aperiodic functions embedded continuously into the space of continuous functions on a closed finite interval.
Citation:
V. N. Belykh, “The absolute $\varepsilon$-entropy of a compact set of infinitely differentiable aperiodic functions”, Sibirsk. Mat. Zh., 59:6 (2018), 1197–1213; Siberian Math. J., 59:6 (2018), 947–959
\Bibitem{Bel18}
\by V.~N.~Belykh
\paper The absolute $\varepsilon$-entropy of a~compact set of infinitely differentiable aperiodic functions
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 6
\pages 1197--1213
\mathnet{http://mi.mathnet.ru/smj3039}
\crossref{https://doi.org/10.17377/smzh.2018.59.601}
\elib{https://elibrary.ru/item.asp?id=38651695}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 6
\pages 947--959
\crossref{https://doi.org/10.1134/S0037446618060010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454441000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059779389}
Linking options:
https://www.mathnet.ru/eng/smj3039
https://www.mathnet.ru/eng/smj/v59/i6/p1197
This publication is cited in the following 2 articles:
V. N. Belykh, “Estimates of Alexandrov's $ n $-Width of the Compact Set of $ C^{\infty} $-Smooth Functions on a Finite Segment”, Sib Math J, 65:1 (2024), 1
V. N. Belykh, “Otsenki aleksandrovskogo $n$-poperechnika kompakta $C^{\infty}$-gladkikh funktsii na konechnom otrezke”, Sib. matem. zhurn., 65:1 (2024), 3–14