Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 5, Pages 1145–1158
DOI: https://doi.org/10.17377/smzh.2018.59.515
(Mi smj3035)
 

Homogenization of the equations of filtration of a viscous fluid in two porous media

A. M. Meirmanovab, S. A. Gritsenkoab

a Belgorod State University, Belgorod, Russia
b National Research University Moscow Power Engineering Institute, Moscow, Russia
References:
Abstract: A homogenized model of filtration of a viscous fluid in two domains with common boundary is deduced on the basis of the method of two-scale convergence. The domains represent an elastic medium with perforated pores. The fluid, filling the pores, is the same in both domains, and the properties of the solid skeleton are distinct.
Keywords: Lamé equations, Stokes equations, homogenization of periodic structures, two-scale convergence.
Received: 23.08.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 5, Pages 909–921
DOI: https://doi.org/10.1134/S0037446618050154
Bibliographic databases:
Document Type: Article
UDC: 517.958:531.33
MSC: 35R30
Language: Russian
Citation: A. M. Meirmanov, S. A. Gritsenko, “Homogenization of the equations of filtration of a viscous fluid in two porous media”, Sibirsk. Mat. Zh., 59:5 (2018), 1145–1158; Siberian Math. J., 59:5 (2018), 909–921
Citation in format AMSBIB
\Bibitem{MeiGri18}
\by A.~M.~Meirmanov, S.~A.~Gritsenko
\paper Homogenization of the equations of filtration of a~viscous fluid in two porous media
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 1145--1158
\mathnet{http://mi.mathnet.ru/smj3035}
\crossref{https://doi.org/10.17377/smzh.2018.59.515}
\elib{https://elibrary.ru/item.asp?id=38618806}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 909--921
\crossref{https://doi.org/10.1134/S0037446618050154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452230400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057490779}
Linking options:
  • https://www.mathnet.ru/eng/smj3035
  • https://www.mathnet.ru/eng/smj/v59/i5/p1145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :64
    References:42
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024