Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 5, Pages 988–997
DOI: https://doi.org/10.17377/smzh.2018.59.504
(Mi smj3024)
 

The local approximation theorem in various coordinate systems

S. G. Basalaevab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: We find some sufficient conditions on the local coordinate system of a Carnot–Carathéodory space of low smoothness that ensure Gromov-type estimates on the divergence of local (quasi)metrics. We also obtain these estimates for the canonical coordinate system of the second kind and various mixed coordinate systems.
Keywords: Carnot–Carathéodory space, local nilpotent approximation.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00801
The author was supported by the Russian Foundation for Basic Research (Grant 17-01-00801).
Received: 04.04.2018
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 5, Pages 778–785
DOI: https://doi.org/10.1134/S003744661805004X
Bibliographic databases:
Document Type: Article
UDC: 514.763.22+514.753.28
Language: Russian
Citation: S. G. Basalaev, “The local approximation theorem in various coordinate systems”, Sibirsk. Mat. Zh., 59:5 (2018), 988–997; Siberian Math. J., 59:5 (2018), 778–785
Citation in format AMSBIB
\Bibitem{Bas18}
\by S.~G.~Basalaev
\paper The local approximation theorem in various coordinate systems
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 5
\pages 988--997
\mathnet{http://mi.mathnet.ru/smj3024}
\crossref{https://doi.org/10.17377/smzh.2018.59.504}
\elib{https://elibrary.ru/item.asp?id=38631988}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 5
\pages 778--785
\crossref{https://doi.org/10.1134/S003744661805004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452230400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057467833}
Linking options:
  • https://www.mathnet.ru/eng/smj3024
  • https://www.mathnet.ru/eng/smj/v59/i5/p988
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :43
    References:32
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024