Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 4, Pages 891–896
DOI: https://doi.org/10.17377/smzh.2018.59.412
(Mi smj3017)
 

This article is cited in 5 scientific papers (total in 5 papers)

Generalized rigid groups: definitions, basic properties, and problems

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (270 kB) Citations (5)
References:
Abstract: We find a natural generalization of the concept of rigid group. The generalized rigid groups are also called $r$-groups. The terms of the corresponding rigid series of every $r$-group can be characterized by both $\exists$-formulas and $\forall$-formulas. We find a recursive system of axioms for the class of $r$-groups of fixed solubility length. We define divisible $r$-groups and give an appropriate system of axioms. Several fundamental problems are stated.
Keywords: soluble group, divisible group, group axioms.
Funding agency Grant number
Russian Science Foundation 14-21-00065
The author was supported by the Russian Science Foundation (Grant 14-21-00065).
Received: 16.11.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 4, Pages 705–709
DOI: https://doi.org/10.1134/S0037446618040122
Bibliographic databases:
Document Type: Article
UDC: 512.5+510.6
Language: Russian
Citation: N. S. Romanovskii, “Generalized rigid groups: definitions, basic properties, and problems”, Sibirsk. Mat. Zh., 59:4 (2018), 891–896; Siberian Math. J., 59:4 (2018), 705–709
Citation in format AMSBIB
\Bibitem{Rom18}
\by N.~S.~Romanovskii
\paper Generalized rigid groups: definitions, basic properties, and problems
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 4
\pages 891--896
\mathnet{http://mi.mathnet.ru/smj3017}
\crossref{https://doi.org/10.17377/smzh.2018.59.412}
\elib{https://elibrary.ru/item.asp?id=35725950}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 4
\pages 705--709
\crossref{https://doi.org/10.1134/S0037446618040122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443717700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052996130}
Linking options:
  • https://www.mathnet.ru/eng/smj3017
  • https://www.mathnet.ru/eng/smj/v59/i4/p891
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :43
    References:45
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024