Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 4, Pages 823–833
DOI: https://doi.org/10.17377/smzh.2018.59.407
(Mi smj3012)
 

This article is cited in 4 scientific papers (total in 4 papers)

Positive presentations of families relative to $e$-oracles

I. Sh. Kalimullina, V. G. Puzarenkob, M. Kh. Faizrahmanova

a Kazan (Volga Region) Federal University, Kazan, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (324 kB) Citations (4)
References:
Abstract: We introduce the notion of $A$-numbering which generalizes the classical notion of numbering. All main attributes of classical numberings are carried over to the objects considered here. The problem is investigated of the existence of positive and decidable computable $A$-numberings for the natural families of sets $e$-reducible to a fixed set. We prove that, for every computable $A$-family containing an inclusion-greatest set, there also exists a positive computable $A$-numbering. Furthermore, for certain families we construct a decidable (and even single-valued) computable total $A$-numbering when $A$ is a low set; we also consider a relativization containing all cases of total sets (this in fact corresponds to computability with a usual oracle).
Keywords: enumeration, decidable numbering, positive numbering, computable numbering, computable set, computably enumerable set, $e$-reducibility.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.451.2016/1.4
1.1515.2017/4.6
Russian Foundation for Basic Research 18-01-00624
I. Sh. Kalimullin was supported by the subsidy of the Government Task for Kazan (Volga Region) Federal University (Grant 1.451.2016/1.4). V. G. Puzarenko was supported by the Russian Foundation for Basic Research (Grant 18-01-00624). M. Kh. Faizrahmanov was supported by the subsidy of the Government Task for Kazan (Volga Region) Federal University (Grant 1.1515.2017/4.6).
Received: 24.09.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 4, Pages 648–656
DOI: https://doi.org/10.1134/S0037446618040079
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 35R30
Language: Russian
Citation: I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Faizrahmanov, “Positive presentations of families relative to $e$-oracles”, Sibirsk. Mat. Zh., 59:4 (2018), 823–833; Siberian Math. J., 59:4 (2018), 648–656
Citation in format AMSBIB
\Bibitem{KalPuzFai18}
\by I.~Sh.~Kalimullin, V.~G.~Puzarenko, M.~Kh.~Faizrahmanov
\paper Positive presentations of families relative to $e$-oracles
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 4
\pages 823--833
\mathnet{http://mi.mathnet.ru/smj3012}
\crossref{https://doi.org/10.17377/smzh.2018.59.407}
\elib{https://elibrary.ru/item.asp?id=35720550}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 4
\pages 648--656
\crossref{https://doi.org/10.1134/S0037446618040079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443717700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053006749}
Linking options:
  • https://www.mathnet.ru/eng/smj3012
  • https://www.mathnet.ru/eng/smj/v59/i4/p823
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :44
    References:37
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024