Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 2, Pages 369–375 (Mi smj30)  

This article is cited in 8 scientific papers (total in 8 papers)

Finite tangled groups

A. L. Myl'nikov

Krasnoyarsk State University
Full-text PDF (169 kB) Citations (8)
References:
Abstract: We study the so-called finite tangled groups. These are the groups whose every subset containing 1 and closed under the operation xy=xy1x is a subgroup. The general problem of studying such groups reduces to the case of tangled groups of odd order. We classify all finite nilpotent tangled groups.
Keywords: twisted subset, twisted subgroup, tangled subgroup.
Received: 01.04.2003
Revised: 24.01.2006
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 2, Pages 295–299
DOI: https://doi.org/10.1007/s11202-007-0030-4
Bibliographic databases:
UDC: 512.544
Language: Russian
Citation: A. L. Myl'nikov, “Finite tangled groups”, Sibirsk. Mat. Zh., 48:2 (2007), 369–375; Siberian Math. J., 48:2 (2007), 295–299
Citation in format AMSBIB
\Bibitem{Myl07}
\by A.~L.~Myl'nikov
\paper Finite tangled groups
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 2
\pages 369--375
\mathnet{http://mi.mathnet.ru/smj30}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2330066}
\zmath{https://zbmath.org/?q=an:1153.20017}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 2
\pages 295--299
\crossref{https://doi.org/10.1007/s11202-007-0030-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245965600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34147158861}
Linking options:
  • https://www.mathnet.ru/eng/smj30
  • https://www.mathnet.ru/eng/smj/v48/i2/p369
  • This publication is cited in the following 8 articles:
    1. Smith J.D.H., “On 2-Engel Groups and Bruck Loops”, J. Group Theory, 16:1 (2013), 87–106  crossref  mathscinet  zmath  isi  scopus
    2. A. L. Mylnikov, “Grafy skruchennykh podmnozhestv, imeyuschie diametr 2”, Tr. IMM UrO RAN, 19, no. 3, 2013, 224–229  mathnet  mathscinet  elib
    3. A. L. Mylnikov, “Grafy skruchennykh podmnozhestv”, Tr. IMM UrO RAN, 18, no. 3, 2012, 179–186  mathnet  elib
    4. A. L. Myl'nikov, “Characterization of finite simple nonabelian groups via twisted sets”, Siberian Math. J., 51:5 (2010), 860–865  mathnet  crossref  mathscinet  isi
    5. A. L. Myl'nikov, “Minimal Involution-Free Nongroup Reduced Twisted Subsets”, Math. Notes, 88:6 (2010), 860–867  mathnet  crossref  crossref  mathscinet  isi
    6. D. V. Veprintsev, A. L. Myl'nikov, “Involutory decomposition of a group and twisted subsets with few involutions”, Siberian Math. J., 49:2 (2008), 218–221  mathnet  crossref  mathscinet  zmath  isi
    7. V. V. Belyaev, A. L. Myl'nikov, “Estimation of the order of a group generated by a twisted subset”, Siberian Math. J., 49:6 (2008), 985–987  mathnet  crossref  mathscinet  isi
    8. A. L. Myl'nikov, “Minimal non-group twisted subsets containing involutions”, Algebra and Logic, 46:4 (2007), 250–262  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :99
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025