Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 3, Pages 561–579
DOI: https://doi.org/10.17377/smzh.2018.59.307
(Mi smj2994)
 

This article is cited in 5 scientific papers (total in 5 papers)

Maximal surfaces on five-dimensional group structures

M. B. Karmanova

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (382 kB) Citations (5)
References:
Abstract: For the classes of the mappings Lipschitz in the sub-Riemannian sense and taking values in the Heisenberg group we introduce some suitable notions of variation of an argument and the corresponding increment of the area functional and derive several basic properties of maximal surfaces on the five-dimensional sub-Lorentzian structures.
Keywords: sub-Lorentzian structures, graph surface, area formula, variation of an argument, area functional, maximal surface.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 14.B25.31.0029
Russian Foundation for Basic Research 14-01-00768-а
The author was supported by the Government of the Russian Federation (Agreement 14.B25.31.0029) and the Russian Foundation for Basic Research (Grant 14-01-00768-a).
Received: 28.12.2015
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 3, Pages 442–457
DOI: https://doi.org/10.1134/S0037446618030072
Bibliographic databases:
Document Type: Article
UDC: 517.2+514.7
MSC: 35R30
Language: Russian
Citation: M. B. Karmanova, “Maximal surfaces on five-dimensional group structures”, Sibirsk. Mat. Zh., 59:3 (2018), 561–579; Siberian Math. J., 59:3 (2018), 442–457
Citation in format AMSBIB
\Bibitem{Kar18}
\by M.~B.~Karmanova
\paper Maximal surfaces on five-dimensional group structures
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 3
\pages 561--579
\mathnet{http://mi.mathnet.ru/smj2994}
\crossref{https://doi.org/10.17377/smzh.2018.59.307}
\elib{https://elibrary.ru/item.asp?id=35774203}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 3
\pages 442--457
\crossref{https://doi.org/10.1134/S0037446618030072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436590800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049331184}
Linking options:
  • https://www.mathnet.ru/eng/smj2994
  • https://www.mathnet.ru/eng/smj/v59/i3/p561
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :60
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024