Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 3, Pages 491–513
DOI: https://doi.org/10.17377/smzh.2018.59.302
(Mi smj2989)
 

This article is cited in 22 scientific papers (total in 22 papers)

Integro-local limit theorems for compound renewal processes under Cramér's condition. I

A. A. Borovkov, A. A. Mogulskii

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: We obtain integro-local limit theorems in the phase space for compound renewal processes under Cramér's moment condition. These theorems apply in a domain analogous to Cramér's zone of deviations for random walks. It includes the zone of normal and moderately large deviations. Under the same conditions we establish some integro-local theorems for finite-dimensional distributions of compound renewal processes.
Keywords: compound renewal process, large deviations, integro-local theorem, renewal measure, Cramér's condition, deviation function, second deviation function.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00101
The authors were partially supported by the Russian Foundation for Basic Research (Grant 18-01-00101).
Received: 12.12.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 3, Pages 383–402
DOI: https://doi.org/10.1134/S0037446618030023
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 35R30
Language: Russian
Citation: A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Sibirsk. Mat. Zh., 59:3 (2018), 491–513; Siberian Math. J., 59:3 (2018), 383–402
Citation in format AMSBIB
\Bibitem{BorMog18}
\by A.~A.~Borovkov, A.~A.~Mogulskii
\paper Integro-local limit theorems for compound renewal processes under Cram\'er's condition.~I
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 3
\pages 491--513
\mathnet{http://mi.mathnet.ru/smj2989}
\crossref{https://doi.org/10.17377/smzh.2018.59.302}
\elib{https://elibrary.ru/item.asp?id=35730773}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 3
\pages 383--402
\crossref{https://doi.org/10.1134/S0037446618030023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436590800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049341902}
Linking options:
  • https://www.mathnet.ru/eng/smj2989
  • https://www.mathnet.ru/eng/smj/v59/i3/p491
    Cycle of papers
    This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :83
    References:41
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024