Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 468–476
DOI: https://doi.org/10.17377/smzh.2018.59.220
(Mi smj2987)
 

Irreflexive modality, the Dummett logic, and continual chains

A. D. Yashin, A. G. Makarov

Moscow State University of Psychology and Education, Moscow, Russia
References:
Abstract: We construct a countable family of extensions of the logic of finite chains (the Dummett logic) in the language containing the standard logical connectives and a new connective (irreflexive modality), each of which determines in the Dummett logic a new logical connective in the sense of Novikov. Two arbitrary logics on this list are incompatible over the Dummett logic; i.e., their union contains a formula absent from the Dummett logic.
Keywords: new logical connective, Novikovв's approach, Dummett logic, irreflexive modality.
Received: 20.01.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 368–374
DOI: https://doi.org/10.1134/S0037446618020209
Bibliographic databases:
Document Type: Article
UDC: 517.11
MSC: 35R30
Language: Russian
Citation: A. D. Yashin, A. G. Makarov, “Irreflexive modality, the Dummett logic, and continual chains”, Sibirsk. Mat. Zh., 59:2 (2018), 468–476; Siberian Math. J., 59:2 (2018), 368–374
Citation in format AMSBIB
\Bibitem{YasMak18}
\by A.~D.~Yashin, A.~G.~Makarov
\paper Irreflexive modality, the Dummett logic, and continual chains
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 468--476
\mathnet{http://mi.mathnet.ru/smj2987}
\crossref{https://doi.org/10.17377/smzh.2018.59.220}
\elib{https://elibrary.ru/item.asp?id=32817979}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 368--374
\crossref{https://doi.org/10.1134/S0037446618020209}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046625525}
Linking options:
  • https://www.mathnet.ru/eng/smj2987
  • https://www.mathnet.ru/eng/smj/v59/i2/p468
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024