Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 461–467
DOI: https://doi.org/10.17377/smzh.2018.59.219
(Mi smj2986)
 

This article is cited in 1 scientific paper (total in 1 paper)

Abelian groups with annihilator ideals of endomorphism rings

A. R. Chekhlov

Tomsk State University, Tomsk, Russia
Full-text PDF (271 kB) Citations (1)
References:
Abstract: We describe the periodic groups whose endomorphism rings satisfy the annihilator condition for the principal left ideals generated by nilpotent elements. We prove that torsion-free reduced separable, vector, and algebraically compact groups have endomorphism rings with the annihilator condition for the principal left (right) ideals generated by nilpotent elements if and only if these rings are commutative. We show that the almost injective groups (in the sense of Harada) are injective, i.e. divisible.
Keywords: nilpotent endomorphism, annihilator, principal ideal, self-injective endomorphism ring, almost injective group.
Received: 15.05.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 363–367
DOI: https://doi.org/10.1134/S0037446618020192
Bibliographic databases:
Document Type: Article
UDC: 512.541
MSC: 35R30
Language: Russian
Citation: A. R. Chekhlov, “Abelian groups with annihilator ideals of endomorphism rings”, Sibirsk. Mat. Zh., 59:2 (2018), 461–467; Siberian Math. J., 59:2 (2018), 363–367
Citation in format AMSBIB
\Bibitem{Che18}
\by A.~R.~Chekhlov
\paper Abelian groups with annihilator ideals of endomorphism rings
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 461--467
\mathnet{http://mi.mathnet.ru/smj2986}
\crossref{https://doi.org/10.17377/smzh.2018.59.219}
\elib{https://elibrary.ru/item.asp?id=32817978}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 363--367
\crossref{https://doi.org/10.1134/S0037446618020192}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046622466}
Linking options:
  • https://www.mathnet.ru/eng/smj2986
  • https://www.mathnet.ru/eng/smj/v59/i2/p461
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :43
    References:39
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024