Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 345–352
DOI: https://doi.org/10.17377/smzh.2018.59.209
(Mi smj2976)
 

This article is cited in 3 scientific papers (total in 3 papers)

On products of $F$-compact spaces

A. V. Ivanov

Institute of Applied Mathematical Research, Petrozavodsk, Russia
Full-text PDF (288 kB) Citations (3)
References:
Abstract: An $F$-compactum or a Fedorchuk compactum is a Hausdorff compact space that admits decomposition into a special well-ordered inverse system with fully closed neighboring projections. We prove that the square of Aleksandroff's “double arrow” space is not an $F$-compactum of countable spectral height. Using this, we demonstrate the impossibility of representing the Helly space as the inverse limit of a countable system of resolutions with metrizable fibers. This gives a negative answer to a question posed by Watson in 1992.
Keywords: $F$-compactum, fully closed mapping, Helly space, resolution.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-18051
The author was supported by the Russian Foundation for Basic Research (Grant 17-51-18051).
Received: 09.08.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 270–275
DOI: https://doi.org/10.1134/S003744661802009X
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: A. V. Ivanov, “On products of $F$-compact spaces”, Sibirsk. Mat. Zh., 59:2 (2018), 345–352; Siberian Math. J., 59:2 (2018), 270–275
Citation in format AMSBIB
\Bibitem{Iva18}
\by A.~V.~Ivanov
\paper On products of $F$-compact spaces
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 345--352
\mathnet{http://mi.mathnet.ru/smj2976}
\crossref{https://doi.org/10.17377/smzh.2018.59.209}
\elib{https://elibrary.ru/item.asp?id=32817966}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 270--275
\crossref{https://doi.org/10.1134/S003744661802009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85038430340}
Linking options:
  • https://www.mathnet.ru/eng/smj2976
  • https://www.mathnet.ru/eng/smj/v59/i2/p345
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :36
    References:35
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024