Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 321–336
DOI: https://doi.org/10.17377/smzh.2018.59.207
(Mi smj2974)
 

The $\Delta^0_\alpha$-computable enumerations of the classes of projective planes

A. K. Voĭtov

Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: Studying computable representations of projective planes, for the classes $K$ of pappian, desarguesian, and all projective planes, we prove that $K^c/_\simeq$ admits no hyperarithmetical Friedberg enumeration and admits a Friedberg $\Delta^0_{\alpha+3}$-computable enumeration up to a $\Delta^0_\alpha$-computable isomorphism.
Keywords: pappian projective plane, desarguesian projective plane, freely generated projective plane, computable model, computable class of models, computable isomorphism.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6848.2016.1
The author was supported by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-6848.2016.1).
Received: 19.01.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 252–263
DOI: https://doi.org/10.1134/S0037446618020076
Bibliographic databases:
Document Type: Article
UDC: 510.53+514.146
MSC: 35R30
Language: Russian
Citation: A. K. Voǐtov, “The $\Delta^0_\alpha$-computable enumerations of the classes of projective planes”, Sibirsk. Mat. Zh., 59:2 (2018), 321–336; Siberian Math. J., 59:2 (2018), 252–263
Citation in format AMSBIB
\Bibitem{Voi18}
\by A.~K.~Vo{\v\i}tov
\paper The $\Delta^0_\alpha$-computable enumerations of the classes of projective planes
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 321--336
\mathnet{http://mi.mathnet.ru/smj2974}
\crossref{https://doi.org/10.17377/smzh.2018.59.207}
\elib{https://elibrary.ru/item.asp?id=32817964}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 252--263
\crossref{https://doi.org/10.1134/S0037446618020076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046619313}
Linking options:
  • https://www.mathnet.ru/eng/smj2974
  • https://www.mathnet.ru/eng/smj/v59/i2/p321
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024