Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 309–320
DOI: https://doi.org/10.17377/smzh.2018.59.206
(Mi smj2973)
 

This article is cited in 8 scientific papers (total in 8 papers)

Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra

A. M. Bikchentaev

Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (343 kB) Citations (8)
References:
Abstract: Suppose that $\mathscr M$ is a von Neumann algebra of operators on a Hilbert space $\mathscr H$ and $\tau$ is a faithful normal semifinite trace on $\mathscr M$. Let $\mathscr E$, $\mathscr F$ and $\mathscr G$ be ideal spaces on $(\mathscr M,\tau)$. We find when a $\tau$-measurable operator $X$ belongs to $\mathscr E$ in terms of the idempotent $P$ of $\mathscr M$. The sets $\mathscr E+\mathscr F$ and $\mathscr E\cdot\mathscr F$ are also ideal spaces on $(\mathscr M,\tau)$; moreover, $\mathscr E\cdot\mathscr F=\mathscr F\cdot\mathscr E$ and $(\mathscr E+\mathscr F)\cdot\mathscr G=\mathscr E\cdot\mathscr G+\mathscr F\cdot\mathscr G$. The structure of ideal spaces is modular. We establish some new properties of the $L_1(\mathscr M,\tau)$ space of integrable operators affiliated to the algebra $\mathscr M$. The results are new even for the *-algebra $\mathscr M=\mathscr B(\mathscr H)$ of all bounded linear operators on $\mathscr H$ which is endowed with the canonical trace $\tau=\operatorname{tr}$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal semifinite trace, measurable operator, compact operator, integrable operator, commutator, ideal space.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02433
Ministry of Education and Science of the Russian Federation 1.1515.2017/4.6
1.9773.2017/8.9
The author was financially supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (Grant 15-41-02433) and by the subsidies allocated to Kazan Federal University for the state task in science (1.1515.2017/4.6 and 1.9773.2017/8.9).
Received: 14.07.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 243–251
DOI: https://doi.org/10.1134/S0037446618020064
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Sibirsk. Mat. Zh., 59:2 (2018), 309–320; Siberian Math. J., 59:2 (2018), 243–251
Citation in format AMSBIB
\Bibitem{Bik18}
\by A.~M.~Bikchentaev
\paper Ideal spaces of measurable operators affiliated to a~semifinite von Neumann algebra
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 309--320
\mathnet{http://mi.mathnet.ru/smj2973}
\crossref{https://doi.org/10.17377/smzh.2018.59.206}
\elib{https://elibrary.ru/item.asp?id=32817963}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 243--251
\crossref{https://doi.org/10.1134/S0037446618020064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046658871}
Linking options:
  • https://www.mathnet.ru/eng/smj2973
  • https://www.mathnet.ru/eng/smj/v59/i2/p309
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024