Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 2, Pages 293–308
DOI: https://doi.org/10.17377/smzh.2018.59.205
(Mi smj2972)
 

This article is cited in 13 scientific papers (total in 13 papers)

Solutions almost periodic at infinity to differential equations with unbounded operator coefficients

A. G. Baskakov, I. I. Strukova, I. A. Trishina

Voronezh State University, Voronezh, Russia
References:
Abstract: The new class of functions almost periodic at infinity is defined using the subspace of functions with integrals decreasing at infinity. We obtain spectral criteria for almost periodicity at infinity of bounded solutions to differential equations with unbounded operator coefficients. For the new class of asymptotically finite operator semigroups we prove the almost periodicity at infinity of their orbits.
Keywords: functions almost periodic at infinity, Banach modules, differential equations with unbounded operator coefficients, function spectrum, operator spectrum, operator semigroups.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.3464.2017/4.6
Russian Foundation for Basic Research 16-01-00197
The first author was supported by the Ministry of Science and Education of the Russian Federation (Grant 1.3464.2017/4.6) and the second author was supported by the Russian Foundation for Basic Research (Grant 16-01-00197).
Received: 27.06.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 2, Pages 231–242
DOI: https://doi.org/10.1134/S0037446618020052
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35R30
Language: Russian
Citation: A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Sibirsk. Mat. Zh., 59:2 (2018), 293–308; Siberian Math. J., 59:2 (2018), 231–242
Citation in format AMSBIB
\Bibitem{BasStrTri18}
\by A.~G.~Baskakov, I.~I.~Strukova, I.~A.~Trishina
\paper Solutions almost periodic at infinity to differential equations with unbounded operator coefficients
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 2
\pages 293--308
\mathnet{http://mi.mathnet.ru/smj2972}
\crossref{https://doi.org/10.17377/smzh.2018.59.205}
\elib{https://elibrary.ru/item.asp?id=32817962}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 2
\pages 231--242
\crossref{https://doi.org/10.1134/S0037446618020052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430858600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046635383}
Linking options:
  • https://www.mathnet.ru/eng/smj2972
  • https://www.mathnet.ru/eng/smj/v59/i2/p293
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :85
    References:49
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024