Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 1, Pages 197–209
DOI: https://doi.org/10.17377/smzh.2018.59.117
(Mi smj2965)
 

This article is cited in 4 scientific papers (total in 4 papers)

Finite groups with given weakly $\sigma$-permutable subgroups

C. Cao, Z. Wu, W. Guo

Department of Mathematics, University of Science and Technology of China, Hefei, P. R. China
Full-text PDF (349 kB) Citations (4)
References:
Abstract: Let $G$ be a finite group and let $\sigma=\{\sigma_i\mid i\in I\}$ be a partition of the set of all primes $\mathbb P$. A set $\mathscr H$ of subgroups of $G$ is said to be a complete Hall $\sigma$-set of $G$ if each nonidentity member of $\mathscr H$ is a Hall $\sigma_i$-subgroup of $G$ and $\mathscr H$ has exactly one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\sigma(G)$. A subgroup $H$ of $G$ is said to be $\sigma$-permutable in $G$ if $G$ possesses a complete Hall $\sigma$-set $\mathscr H$ such that $HA^x=A^xH$ for all $A\in\mathscr H$ and all $x\in G$. A subgroup $H$ of $G$ is said to be weakly $\sigma$-permutable in $G$ if there exists a $\sigma$-subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\cap T\leq H_{\sigma G}$, where $H_{\sigma G}$ is the subgroup of $H$ generated by all those subgroups of $H$ which are $\sigma$-permutable in $G$. We study the structure of $G$ under the condition that some given subgroups of $G$ are weakly $\sigma$-permutable in $G$. In particular, we give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some available results are generalized.
Keywords: finite group, $\sigma$-subnormal subgroup, $\sigma$-permutable subgroup, weakly $\sigma$-permutable subgroup, $\sigma$-soluble group supersoluble group.
Funding agency Grant number
National Natural Science Foundation of China 11771409
Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences
The authors were supported by the NNSF of China (Grant 11771409) and the Wu Wen-Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences.
Received: 16.03.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 1, Pages 157–165
DOI: https://doi.org/10.1134/S0037446618010172
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20D10, 20D20, 20D35
Language: Russian
Citation: C. Cao, Z. Wu, W. Guo, “Finite groups with given weakly $\sigma$-permutable subgroups”, Sibirsk. Mat. Zh., 59:1 (2018), 197–209; Siberian Math. J., 59:1 (2018), 157–165
Citation in format AMSBIB
\Bibitem{CaoWuGuo18}
\by C.~Cao, Z.~Wu, W.~Guo
\paper Finite groups with given weakly $\sigma$-permutable subgroups
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 197--209
\mathnet{http://mi.mathnet.ru/smj2965}
\crossref{https://doi.org/10.17377/smzh.2018.59.117}
\elib{https://elibrary.ru/item.asp?id=32824604}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 157--165
\crossref{https://doi.org/10.1134/S0037446618010172}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427144300017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043524396}
Linking options:
  • https://www.mathnet.ru/eng/smj2965
  • https://www.mathnet.ru/eng/smj/v59/i1/p197
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024