Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 1, Pages 185–196
DOI: https://doi.org/10.17377/smzh.2018.59.116
(Mi smj2964)
 

This article is cited in 8 scientific papers (total in 8 papers)

Weakly periodic Gibbs measures for HC-models on Cayley trees

R. M. Khakimov

Namangan State University, Namangan, Uzbekistan
Full-text PDF (358 kB) Citations (8)
References:
Abstract: We study hard-core (HC) models on Cayley trees. Given a $2$-state HC-model, we prove that exactly two weakly periodic (aperiodic) Gibbs measures exist under certain conditions on the parameters. Moreover, we consider fertile $4$-state HC-models with the activity parameter $\lambda>0$. The three types of these models are known to exist. For one of the models we show that the translationinvariant Gibbs measure is not unique.
Keywords: Cayley tree, configuration, HC-model, fertile graph, Gibbs measure, weakly periodic measure, translation-invariant measure.
Received: 07.12.2015
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 1, Pages 147–156
DOI: https://doi.org/10.1134/S0037446618010160
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: R. M. Khakimov, “Weakly periodic Gibbs measures for HC-models on Cayley trees”, Sibirsk. Mat. Zh., 59:1 (2018), 185–196; Siberian Math. J., 59:1 (2018), 147–156
Citation in format AMSBIB
\Bibitem{Kha18}
\by R.~M.~Khakimov
\paper Weakly periodic Gibbs measures for HC-models on Cayley trees
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 185--196
\mathnet{http://mi.mathnet.ru/smj2964}
\crossref{https://doi.org/10.17377/smzh.2018.59.116}
\elib{https://elibrary.ru/item.asp?id=32824602}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 147--156
\crossref{https://doi.org/10.1134/S0037446618010160}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427144300016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043510259}
Linking options:
  • https://www.mathnet.ru/eng/smj2964
  • https://www.mathnet.ru/eng/smj/v59/i1/p185
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024