Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 1, Pages 171–184
DOI: https://doi.org/10.17377/smzh.2018.59.115
(Mi smj2963)
 

This article is cited in 21 scientific papers (total in 21 papers)

Degenerate linear evolution equations with the Riemann–Liouville fractional derivative

V. E. Fedorovabc, M. V. Plekhanovaba, R. R. Nazhimova

a Chelyabinsk State University, Chelyabinsk, Russia
b South Ural State University, Chelyabinsk, Russia
c Shadrinsk State Pedagogical University, Shadrinsk, Russia
References:
Abstract: We study the unique solvability of the Cauchy and Schowalter–Sidorov type problems in a Banach space for an evolution equation with a degenerate operator at the fractional derivative under the assumption that the operator acting on the unknown function in the equation is $p$-bounded with respect to the operator at the fractional derivative. The conditions are found ensuring existence of a unique solution representable by means of the Mittag-Leffler type functions. Some abstract results are illustrated by an example of a finite-dimensional degenerate system of equations of a fractional order and employed in the study of unique solvability of an initial-boundary value problem for the linearized Scott-Blair system of dynamics of a medium.
Keywords: degenerate evolution equation, Riemann–Liouville derivative, Cauchy type problem, Mittag-Leffler type operator function, initial-boundary value problem, Scott-Blair medium.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
1.6462.2017/БЧ
The authors were supported by the Government of the Russian Federation (Resolution No. 211 of 16.03.2013, Grant 02.A03.21.0011) and the Ministry for Higher Education and Science of the Russian Federation (Grant 1.6462.2017/BCh).
Received: 15.05.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 1, Pages 136–146
DOI: https://doi.org/10.1134/S0037446618010159
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35R30
Language: Russian
Citation: V. E. Fedorov, M. V. Plekhanova, R. R. Nazhimov, “Degenerate linear evolution equations with the Riemann–Liouville fractional derivative”, Sibirsk. Mat. Zh., 59:1 (2018), 171–184; Siberian Math. J., 59:1 (2018), 136–146
Citation in format AMSBIB
\Bibitem{FedPleNaz18}
\by V.~E.~Fedorov, M.~V.~Plekhanova, R.~R.~Nazhimov
\paper Degenerate linear evolution equations with the Riemann--Liouville fractional derivative
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 171--184
\mathnet{http://mi.mathnet.ru/smj2963}
\crossref{https://doi.org/10.17377/smzh.2018.59.115}
\elib{https://elibrary.ru/item.asp?id=32824582}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 136--146
\crossref{https://doi.org/10.1134/S0037446618010159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427144300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043504099}
Linking options:
  • https://www.mathnet.ru/eng/smj2963
  • https://www.mathnet.ru/eng/smj/v59/i1/p171
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :75
    References:36
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024